DOI QR코드

DOI QR Code

Analysis of the Characteristic of Monthly Rainfall Erosivity in Korea with Derivation of Rainfall Energy Equation

강우에너지식 유도를 통한 전국 월별 강우침식인자 특성 분석

  • Lee, Jong Seol (National Disaster Management Institute, Social Research Division) ;
  • Won, Jin Young (National Disaster Management Institute, Social Research Division)
  • 이종설 (국립재난안전연구원 복합재난연구실) ;
  • 원진영 (국립재난안전연구원 복합재난연구실)
  • Received : 2013.04.22
  • Accepted : 2013.05.27
  • Published : 2013.06.30

Abstract

The Rainfall kinetic energy equation derived in United States has been used or the result of rainfall erosivity factor using this equation has been applied for soil erosion estimation in the field. But the rainfall energy equation depends on the characteristic of observed location. So, in this study the correlation equation between rainfall intensity and rainfall energy was proposed using raindrop distribution data measured at Daegwanryeong observatory. Also monthly rainfall erosivity factors of 76 observatories were estimated with different rainfall energy equation considering the seasonal rainfall characteristic. And the monthly rainfall erosivity factor maps were conducted using the values of rainfall erosivity factors for the estimation of monthly soil erosion.

현재 실무에서는 토양침식량 산정 시, 미국에서 개발된 강우에너지식을 사용하여 강우침식인자를 계산하거나, 이 식을 이용한 강우침식인자 산정 결과를 적용하고 있다. 그러나 관측지역의 기후적 지리적 특성 및 분석 조건에 따라 강우에너지식은 상당한 차이를 보일 수 있으므로, 본 연구에서는 대관령 지점의 강우입경분포 자료를 이용하여 강우강도와 강우에너지의 상관관계식을 제안하였다. 제안된 식은 국내외에서 주로 사용되는 강우에너지식과 비교하였으며, 관측데이터를 이용하여 그 적용성을 검증 하였다. 또한 계절에 따라 강우침식능에 영향을 줄 수 있는 강우특성이 달라짐에 착안하여 강우에너지식에 따른 전국 76개 관측소의 월별 강우침식인자를 산정하였고, 이를 이용하여 월별 토양침식량 산정을 위한 등강우침식도를 제시하였다.

Keywords

Acknowledgement

Supported by : 국립기상연구소

References

  1. Beard, K.V. (1977) Terminal velocity and shape of cloud and precipitation drops aloft, Trans J.Atmos. Sci., Vol. 33, pp.851-864.
  2. Brown, L.C. and Foster, G.R. (1987) Storm Erosivity using Idealized Intensity Distributions, Trans ASAE 30, pp.379-386. https://doi.org/10.13031/2013.31957
  3. Coutinho, M.A. and Tomas, P.P. (1995) Characterization of raindrop size distributions at the Vale Formoso Experimental Erosion Center, Catena, Vol. 25, pp.187-197. https://doi.org/10.1016/0341-8162(95)00009-H
  4. Hudson, N.W. (1971) Raindrop size, In Soil Conservation, Cornell University Press, Ithaca, New york, pp. 50-56.
  5. Jayawardena, A.W. and Rezaur, R.B. (2000) Drop Size distribution and kinetic energy load of rainstorms in Hong Kong, Hydro Process, Vol. 14, pp.1069-1082. https://doi.org/10.1002/(SICI)1099-1085(20000430)14:6<1069::AID-HYP997>3.0.CO;2-Q
  6. Jung, P.K., Ko, M.H., Im, J.N., Um, K.T. and Choi, D.U. (1983) Rainfall Erosion factor for Estimating Soil Loss, Korean J. Soil Sci. Fert. Vol. 16, No. 2, pp.112-118.
  7. Lee, J.H., J.Y. Shin, and J.H. Heo (2011) Evaluation of Rainfall Erosivity in Korea using Different Kinetic Energy Equations, Korea J. Soil Sci. Fert. Vol. 44, No. 3, pp.337-343. https://doi.org/10.7745/KJSSF.2011.44.3.337
  8. Lee, J.S. and Chumg, J.H. (2009) Characteristics Analysis for RUSLE Factors based on Measured Data of Gangwon Experimental Watershed(I), Journal of the Korean Society of Hazard Mitigation, Vol. 9, No. 6, pp.111-117.
  9. No, J.K. and Kwon, S.K. (1984) A Study of the Estimation of Rainfall Kinetic Energy based on Rainfall Characteristics, College of Agricultural Research, Seoul National University, Vol. 9, No. 2, pp.23-31.
  10. Onega, K., Shirai, K. and Yoshinaga, A. (1988) Rainfall erosion and how to control its effects on farmland in Okinawa, Land conservation for future generation, Department of Land Development, Bangkok, pp.627-239.
  11. Park, J.H., Woo, H.S., Pyun, C.K., and Kim, K.I. (2000) A Study of Distribution of Rainfall Erosivity in USLE/RUSLE for Estimation of Soil Loss, Journal of Korean Water Res. Assoc., Vol. 33, No. 5, pp.603-610.
  12. Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K. and Yoder, D.C. (1997) Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universial Soil Loss Equa-tion(RUSLE), USDA Agric. Research Service, Washington,D.C.
  13. Rose C.W. (1960) Soil detachment caused Rainfall, Soil Science, Vol. 89, No. 1, pp.683-687.
  14. Rosewell, C.J. (1986) Rainfall Kinetic Energy in Eastern Australia, Journal of Climate and Applied Meteorology, No. 25, pp.1965-1971.
  15. Torres, D., Salles, C., Creutin, J.D. and Delrieu, G. (1992) Quantification of Soil Detachment by Raindrop Impact: Performance of Classical Formulae of Kinetic Energy in Mediterranean Storms, IAHS Publ., No. 210, pp. 115-124.
  16. van der Knijff J.M., Jones, R.J.A. and Montanarella, L. (1999) Soil Erosion Risk Assessment in Italy, EUROPEAN SOIL BUREAU.
  17. van Dijk, A.I.J.M, Bruijnzeel, L.A. and Rosewell, C.J. (2002) Rainfall Intensity-Kinetic Energy Relationships: A Critical Literature Review, Journal of Hydrology, Vol. 261, pp. 1-23. https://doi.org/10.1016/S0022-1694(02)00020-3
  18. Wischmeier, W.H. and Smith, D.D. (1978) Predicting Rainfall Erosion Lossess: A Guide to Conservation Planning, USDA Agric. Handbook, No. 537, Washington, D.C.
  19. Zanchi, C. and Torri, D. (1980) Evaluation of Rainfall Energy in Central Italy, Assessment of Erosion, Wiley, New York, pp. 133-142.

Cited by

  1. Regionalization of monthly rainfall erosivity patterns in Switzerland vol.20, pp.10, 2016, https://doi.org/10.5194/hess-20-4359-2016