DOI QR코드

DOI QR Code

The Inhibitory Effects of Alnus Japonica Steud. Extract on Melanogenesis

적양 추출물의 멜라닌 합성 저해효과

  • 이준영 ((주)사임당화장품 기술연구소) ;
  • 임경란 ((주)사임당화장품 기술연구소) ;
  • 정택규 ((주)사임당화장품 기술연구소) ;
  • 윤경섭 ((주)사임당화장품 기술연구소)
  • Received : 2013.01.14
  • Accepted : 2013.04.28
  • Published : 2013.06.30

Abstract

In order to develop new skin whitening agents, we prepared the EtOAc layer (AJE) after enzyme treatment of 75% EtOH extract of the Alnus Japonica Steud. We measured their tyrosinase inhibitory activity in vitro and melanin synthesis inhibitory activity in B16-F1 melanoma cells. They did not show inhibitory activity against mushroom tyrosinase but showed melanin synthesis inhibitory activity in a dose-dependent manner. In a melanin synthesis inhibition assay, AJE suppressed melanin production up to 52% at a concentration of $40{\mu}g/mL$. To elucidate the mechanism of the inhibitory effects of AJE on melanogenesis, we measured expression of melanogenesis-related proteins by the western blot assay. As a result, AJE suppressed the expression of tyrosinase related protein 1 (TRP-1) and microphthalmia associated transcription factor (MITF). Moreover, AJE increased the expression of phosphorylated extracellular signal-regulated kinase (p-ERK). These results conclude that ERK activation by AJE reduces melanin synthesis via MITF downregulation and is subsequent to the inhibition of TRP-1 expression. Therefore, we suggest that AJE could be used as active ingredients for skin whitening.

본 연구에서는 새로운 미백소재를 개발하기 위해 적양 에탄올추출물을 효소처리 후 EtOAc 분획물(AJE)을 준비하여 in vitro 상에서 이들의 tyrosinase 저해활성과 세포 수준에서의 멜라닌 합성 저해효과를 측정하였다. AJE는 mushroom tyrosinase의 활성에는 영향을 미치지 않았으나 B16-F1 melanoma cell을 이용한 멜라닌 합성 저해효과에 있어서 농도 의존적으로 멜라닌 합성을 저해하여, $40{\mu}g/mL$의 농도에서 52% 이상의 저해효과를 나타내었다. 이러한 멜라닌 합성 저해효과에 대한 작용 기전을 확인하기 위해 western blot을 통해 멜라닌 합성 경로에 관련된 단백질의 발현을 측정하였다. 그 결과 멜라닌 합성에 관여하는 효소인 tyrosinase related protein 1 (TRP-1)의 발현을 억제하였고, 이를 조절하는 전사인자인 microphthalmia associated transcription factor (MITF) 발현 역시 효과적으로 억제하였다. 또한 extracellular signal-regulated kinase (ERK) pathway를 활성화시킴으로써 phosphorylated extracellular signal-regulated kinase (p-ERK)의 발현을 상당히 증가시키는 것을 확인할 수 있었다. 이러한 결과는 AJE가 멜라닌 합성의 신호전달 경로 중 ERK pathway의 활성화를 통해 MITF의 분해를 촉진시키고 이로 인해 MITF의 발현을 감소시키며, 그 결과 멜라닌 합성에 관여하는 효소 중 TRP-1의 발현을 감소시킴으로써 멜라닌 합성을 저해하는 것으로 사료되며, 따라서 AJE는 미백용도의 기능성 원료로서의 가능성이 큰 것으로 판단된다.

Keywords

References

  1. H. Z. Hill, W. Li, P. Xin, and D. L. Michell, Melanin: a two edged sword?, Pigment Cell Res., 10, 158 (1998).
  2. M. Seiberg, L. Babiarz, and C. B. Lin, IL-41 the PAR-2 pathway is differentially expressed in skin of color, Pigment Cell Res., 16, 591 (2003).
  3. V. J. Hearing and M. Jimenez, Analysis of mammalian pigmentation at the molecular level, Pigment Cell Res., 2, 75 (1989). https://doi.org/10.1111/j.1600-0749.1989.tb00166.x
  4. V. J. Hearing and K. Tsukamoto, Enzymatic control of pigmentation in mammals, FASEB J., 5, 2902 (1991).
  5. T. Kobayashi, W. D. Vieira, B. Potterf, C. Sakai, G. Imokawa, and V. J. Hearing, Modulation of melanogenic protein expression during the switch from eu-to pheomelanogenesis, J. Cell Sci., 108, 2301 (1995).
  6. T. Kobayashi, K. Urabe, A. Winder, C. Jimenez- Cervantes, G. Imokawa, T. Brewington, F. Solano, J. C. Garcia-Borron, and V. J. Hearing, Tyrosinase related protein 1 (TRP1) functions as a DHICA oxidase in melanin biosynthesis, EMBO J., 13, 5818 (1994).
  7. K. Yokoyama, H. Suzuki, K. Yasumoto, Y. Tomita, and S. Shibahara, Molecular cloning and functional analysis of a cDNA coding for human DOPAchrome tautomerase/tyrosinase-related protein-2, Biochim. Biophys. Acta., 1217, 317 (1994). https://doi.org/10.1016/0167-4781(94)90292-5
  8. I. Aksan and C. R. Goding, Targeting the microphthalmia basic helix-loop- helix-leucine zipper transcription factor to a subset of E-box elements in vitro and in vivo, Mol. Cell. Biol., 18, 6930 (1998). https://doi.org/10.1128/MCB.18.12.6930
  9. C. A. Hodgkinson, K. J. Moore, A. Nakayama, E. Steingrimsson, N. G. Copeland, N. A. Jenkins, and H. Arnheiter, Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein, Cell, 74, 395 (1993). https://doi.org/10.1016/0092-8674(93)90429-T
  10. E. Steingrimsson, K. J. Moore, M. L. Lamoreux, A. R. Ferre-D'Amare, S. K. Burley, D. C. Zimring, L. C. Skow, C. A. Hodgkinson, H. Arnheiter, N. G. Copeland, and N. A. Jenkins, Molecular basis of mouse microphthalmia (mi) mutations helps explain their developmental and phenotypic consequences, Nat. Genet., 8, 256 (1994). https://doi.org/10.1038/ng1194-256
  11. H. R. Widlund and D. E. Fisher, Microphthalamia associated transcription factor: a critical regulator of pigment cell development and survival, Oncogene, 22, 3035 (2003). https://doi.org/10.1038/sj.onc.1206443
  12. N. J. Bentley, T. Eisen, and C. R. Goding, Melanocyte- specific expression of the human tyrosinase promoter: activation by the microphthalmia gene product and role of the initiator, Mol. Cell. Biol., 14, 7996 (1994). https://doi.org/10.1128/MCB.14.12.7996
  13. C. Bertolotto, P. Abbe, T. J. Hemesath, K. Bille, D. E. Fisher, J. P. Ortonne, and R. Ballotti, Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes, J. Cell Biol., 142, 827 (1998). https://doi.org/10.1083/jcb.142.3.827
  14. C. Levy, M. Khaled, and D. E. Fisher, MITF: master regulator of melanocyte development and melanoma oncogene, Trends Mol. Med., 12, 406 (2006). https://doi.org/10.1016/j.molmed.2006.07.008
  15. K. Yasumoto, K. Yokoyama, K. Takahashi, Y. Tomita, and S. Shibahara, Functional analysis of microphthalmia- associated transcription factor in pigment cell-specific transcription of the human tyrosinase family genes, J. Biol. Chem., 272, 503 (1997). https://doi.org/10.1074/jbc.272.1.503
  16. U. Yavuzer, E. Keenan, P. Lowings, J. Vachtenheim, G. Currie, and C. R. Goding, The microphthalmia gene product interacts with the retinoblastoma protein in vitro and is a target for deregulation of melanocyte- specific transcription, Oncogene, 10, 123 (1995).
  17. W. Englaro, C. Bertolotto, R. Busca, A. Brunet, G. Pages, J. P. Ortonne, and R. Ballotti, Inhibition of the mitogen-activated protein kinase pathway triggers B16 melanoma cell differentiation. J. Biol. Chem., 273, 9966 (1998). https://doi.org/10.1074/jbc.273.16.9966
  18. D. S. Kim, E. S. Hwang, J. E. Lee, S. Y. Kim, S. B. Kwon, and K. C. Park, Sphingosine-1-phosphate decrease melanin synthesis via sustained ERK activation and subsequent MITF degradation. J. Cell Sci., 116, 1699 (2003). https://doi.org/10.1242/jcs.00366
  19. D. S. Kim, S. Y. Kim, J. H. Chung, K. H. Kim, H. C. Eun, and K. C. Park, Delayed ERK activation by ceramide reduces melanin synthesis in human melanocytes. Cell. Signal., 14, 779 (2002). https://doi.org/10.1016/S0898-6568(02)00024-4
  20. W. Englaro, R. Rezzonico, M. Durand-Clement, D. Lallemand, J. P. Ortonne, and R. Ballotti, Mitogenactivated protein kinase pathway and AP-1 are activated during cAMP-induced melanogenesis in B-16 melanoma cells. J. Biol. Chem., 270, 24315 (1995). https://doi.org/10.1074/jbc.270.41.24315
  21. S. J. Lee, Korean Folk Medicine, 3, Seoul National University, Seoul (1966).
  22. 中藥大辭典, 3, 3042, 小學館, Tokyo (1985).
  23. M. Terazawa, H. Okuyama, and M. Miyake, Isolation of hirsutanonol and hirsutenone, two new diarylheptanoids form the green bark of keyamahannoki, Alnus hirsuta Turcz, Mokuzai Gakkaishi, 19, 45 (1973).
  24. J. J. Karches, M. L. Laever, D. F. Barofsky, and E. Barofsky, Structure of oregonin, a natural diarylheptanoid xyloside. J. Chem. Soc., Chem. Commun., 16, 649 (1974).
  25. M. W. Lee, T. Tanaka, G. Nonaka, and I. Nishioka, Hirsunin, an ellagitannin with a diarylheptanoid moiety from Alnus hitsuta var. Microphylla, Phytochemistry, 31, 967 (1992). https://doi.org/10.1016/0031-9422(92)80195-K
  26. M. Tori, A. Hashimoto, K. Hirose, and Y. Asakawa, Diarylheptanoids, flavonoids, stilbenoids, sesquiterpenoids and a phenanthrene from Alnus maximowiczii, Phytochemistry, 40, 1263 (1995). https://doi.org/10.1016/0031-9422(95)00439-E
  27. H. Wada, H. Tachibana, H. Fuchino, and N. Tanaka, Three new diarylheptanoid glycosides from Alnus japonica, Chem. Pharm. Bull., 46, 1054 (1998). https://doi.org/10.1248/cpb.46.1054
  28. R. F. Gonzalez-Laredo, J. Chem, Y. M. Karchesy, and J. J. Karchesy, Four new diarylheptanoid glycosides from Alnus Rubra Bark, Nat. Prod. Lett., 13, 75 (1999). https://doi.org/10.1080/10575639908048826
  29. T. Suga, N. Iwata, and Y. Asakawa, Chemical constituents of the male flower of Alnus pendula (Betulaceae), Bull. Chem. Soc. Jpn., 45, 2058 (1972). https://doi.org/10.1246/bcsj.45.2058
  30. Y. Asakawa, Chemical constituents of Alnus sieboldiana (Betulaceae) Ⅱ. The isolation and structure of flavonoids and stilbenes, Bull. Chem. Soc. Jpn., 44, 2761 (1971). https://doi.org/10.1246/bcsj.44.2761
  31. V. A. Stikhin, A. I. Ban'kovskii, V. I. Glyzin, and I. A. Kir'yanova, Quercetin-3-sophoroside from the pollen of Alnus glutinosa and Fraxinus lanceolata, Chem. Nat. Comp., 10, 526 (1974). https://doi.org/10.1007/BF00563830
  32. M. W. Lee, D. W. Jeong, Y. A. Lee, M. S. Park, and S. H. Toh, Flavonoids from the Leaves of Alnus hirsuta, Yakhak Hoeji, 43, 547 (1999).
  33. K. W. Ahn, S. H. Toh, D. W. Jeong, J. S. Kim, S. M. Sho, and M. W. Lee, Flavonoids from the Leaves of Alnus maximowiczii Call, Yakhak Hoeji, 44, 41 (2000).
  34. M. W. Lee, M. S. Park, D. W. Jeong, K. H. Kim, and S. H. Toh, Diarylheptanoids from the Leaves of Alnus hirsuta Trucz, Arch. Pharm. Res., 23, 50 (2000). https://doi.org/10.1007/BF02976466
  35. M. W. Lee, M. S. Park, D. W. Jeong, K. H. Kim, S. H. Toh, D. R. Hahn, Y. C. Kim, and H. T. Chung, Diarylheptanoids with in vitro inducible nitric oxide synthesis inhibitory activity from Alnus hirsuta, Planta Med., 66, 551 (2000). https://doi.org/10.1055/s-2000-8606
  36. M. W. Lee, J. H. Kim, D. W. Jeong, K. H. Ahn, S. H. Toh, and Y. J. Surh, Inhibition of cyclooxygenase- 2 expression by diarylheptanoids from the bark of Alnus hirsuta var. sibirica, Biol. Pharm. Bull., 23, 517 (2000). https://doi.org/10.1248/bpb.23.517
  37. D. I. Lee, J. K. Chang, M. W. Lee, and S. G. Hong, Effects of oregonin, diarylheptanoid derivative from plant on antitumor, Chung-Ang J. Pharm. Sci., 12, 50 (1998).
  38. Y. A. Lee, K. H. Kim, J. S. Kim, S. M. Cho, S. W. Kim, and M. W. Lee, Antioxidative effects of diarylheptanoids from Alnus hirsuta, Yakhak Hoeji, 44, 193 (2000).
  39. S. M. Cho, Y. M. Kwon, J. H. Lee, K. H. You, and M. W. Lee, Melanogenesis inhibitory activities of diarylheptanoids from Alnus hirsuta Turcz in B16 mouse melanoma cell, Arch. Pharm. Res., 25, 885 (2002). https://doi.org/10.1007/BF02977009
  40. T. Mosmann, Rapid colorimetric assay for the cellular growth and survival: application to proliferation and cytotoxic assay, J. Immun. Methods, 65, 55 (1983). https://doi.org/10.1016/0022-1759(83)90303-4
  41. M. Oka, M. Ichihashi, and AK. Chakraborty, Enhanced expression of protein kinase C subspecies in melanogenic compartments in B16 melanoma cells by UVB or MSH. J. Invest. Dermatol., 106, 377 (1996). https://doi.org/10.1111/1523-1747.ep12343168
  42. R. Busca and R. Ballott, Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res., 13, 60 (2000). https://doi.org/10.1034/j.1600-0749.2000.130203.x
  43. C. P. Sassone, Coupling gene expression to cAMP signalling: Role of CREB and CREM. Int. J. Biochem. Cell B., 30, 27 (1998). https://doi.org/10.1016/S1357-2725(97)00093-9
  44. B, Saha, S. K. Singh, C. Sarkar, R. Bera, J. Ratha, D. J. Tobin, and R. Bhadra, Activation of the MITF promoter by lipid-stimulated activation of p38-stress signalling to CREB. Pigment Cell Res., 29, 595 (2006).
  45. K. T. Park, J. K. Kim, D. H. Hwang, Y. M. Yoo, and Y. H. Lim, Inhibitory effect of mulberroside A and its derivatives on melanogenesis induced by ultraviolet B irradiation. Food Chem. Toxicol., 49, 3038 (2011). https://doi.org/10.1016/j.fct.2011.09.008
  46. Xu, W., L. Gong, M. M. Haddad, O. Bischof, J. Campisi, E. T. Yeh, and E. E. Medrano, Regulation of Microphthalmia-associated transcription factor MITF protein levels by association with the ubiquitin- conjugation enzyme hUBC9. Exp. Cell Res., 255, 135 (2000). https://doi.org/10.1006/excr.2000.4803

Cited by

  1. Effect of Medicinal Herb Prepared through Traditional Antidiabetic Prescription on α-Glucosidase Activity and Evaluation Method for Anti-Melanogenesis Agents Using α-Glucosidase Activity vol.44, pp.7, 2015, https://doi.org/10.3746/jkfn.2015.44.7.993
  2. 2D-QSAR Analyses on The Tyrosinase Inhibitory Activity of 2-[(2,6-Dioxocyclohexyl)methyl]-cyclohexane-1,3-dione Analogues vol.40, pp.4, 2014, https://doi.org/10.15230/SCSK.2014.40.4.383