DOI QR코드

DOI QR Code

Preparation and characterization of isotropic pitch-based carbon fiber

  • Zhu, Jiadeng (Carbon Convergence Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology) ;
  • Park, Sang Wook (Chemical and Polymer Laboratory, GS Caltex R&D Center) ;
  • Joh, Han-Ik (Carbon Convergence Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology) ;
  • Kim, Hwan Chul (Department of Organic Materials and Fiber Engineering, Chonbuk National University) ;
  • Lee, Sungho (Carbon Convergence Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology)
  • Received : 2013.03.10
  • Accepted : 2013.04.05
  • Published : 2013.04.30

Abstract

Isotropic pitch fibers were stabilized and carbonized for preparing carbon fibers. To optimize the duration and temperature during the stabilization process, a thermogravimetric analysis was conducted. Stabilized fibers were carbonized at 1000, 1500, and $2000^{\circ}C$ in a furnace under a nitrogen atmosphere. An elemental analysis confirmed that the carbon content increased with an increase in the carbonization temperature. Although short graphitic-like layers were observed with carbon fibers heat-treated at 1500 and $2000^{\circ}C$, Raman spectroscopy and X-ray diffraction revealed no significant effect of the carbonization temperature on the crystalline structure of the carbon fibers, indicating the limit of developing an ordered structure of isotropic pitch-based carbon fibers. The electrical conductivity of the carbonized fiber reached $3.9{\times}10^4$ S/m with the carbonization temperature increasing to $2000^{\circ}C$ using a four-point method.

Keywords

References

  1. Northolt MG, Veldhuizen LH, Jansen H. Tensile deformation of carbon fibers and the relationship with the modulus for shear between the basal planes. Carbon, 29, 1267 (1991). http://dx.doi. org/10.1016/0008-6223(91)90046-L.
  2. Kumar S, Anderson DP, Crasto AS. Carbon fibre compressive strength and its dependence on structure and morphology. J Mater Sci, 28, 423 (1993). http://dx.doi.org/10.1007/BF00357820.
  3. Edie DD, Fain CC, Robinson KE, Harper AM, Rogers DK. Ribbon-shape carbon fibers for thermal management. Carbon, 31, 941 (1993). http://dx.doi.org/10.1016/0008-6223(93)90196-H.
  4. Hong SH, Korai Y, Mochida I. Development of mesoscopic textures in transverse cross-section of mesophase pitch-based carbon fibers. Carbon, 37, 917 (1999). http://dx.doi.org/10.1016/S0008-6223(9800236-X.
  5. Hong SH, Korai Y, Mochida I. Mesoscopic texture at the skin area of mesophase pitch-based carbon fiber. Carbon, 38, 805 (2000). http://dx.doi.org/10.1016/S0008-6223(99)00175-X.
  6. Edie DD. The effect of processing on the structure and properties of carbon fibers. Carbon, 36, 345 (1988). http://dx.doi.org/10.1016/S0008-6223(97)00185-1.
  7. Mochida I, Kudo K, Fukuda N, Takeshita K. Carbonization of pitches--IV: Carbonization of polycyclic aromatic hydrocarbons under the presence of aluminum chloride catalyst. Carbon, 13, 135 (1975). http://dx.doi.org/10.1016/0008-6223(75)90270-5.
  8. Hutchenson KW, Roebers JR, Thies MC. Fractionation of petroleum pitch by supercritical fluid extraction. Carbon, 29, 215 (1991). http://dx.doi.org/10.1016/0008-6223(91)90072-Q.
  9. Kim CJ, Ryu SK, Rhee BS. Properties of coal tar pitch-based mesophase separated by high-temperature centrifugation. Carbon, 31, 833 (1993). http://dx.doi.org/10.1016/0008-6223(93)90023-4.
  10. Wazir AH, Kakakhel L. Preparation and characterization of pitchbased carbon fibers. New Carbon Mater, 24, 83 (2009). http:// dx.doi.org/10.1016/S1872-5805(08)60039-6.
  11. Mora E, C. Blanco C, Prada V, Santamaria R, Granda M, Menendez R. A study of pitch-based precursors for general purpose carbon fibres. Carbon, 40, 2719 (2002). http://dx.doi.org/10.1016/S0008-6223(02)00185-9.
  12. Miuea K, Nakagawa H, Hashimoto K. Examination of the oxidative stabilization reaction of the pitch-based carbon fiber through continuous measurement of oxygen chemisorption and gas formation rate. Carbon, 33, 275 (1995). http://dx.doi.org/10.1016/0008-6223(94)00133-K.
  13. Morgan P. Carbon fibers and their composites, Taylor & Francis, Boca Raton, 296 (2005).
  14. Dongbu Hannong Chem. Production of high-softening optically isotropic pitch. KR Patent, 1999-0012608 (1999).
  15. Liu S, Blanco C, Rand B. Large diameter carbon fibres from mesophase pitch. Carbon, 40, 2109 (2002). http://dx.doi.org/10.1016/S0008-6223(02)00060-X.
  16. Hayashi JI, Nakashima M, Kusakabe K, Morooka S, Mitsuda S. Rapid stabilization of pitch precursor by multi-step thermal oxidation. Carbon, 33, 1567 (1995). http://dx.doi.org/10.1016/0008-6223(95)00118-W.
  17. Stevens WC, Diefendorf RJ. Thermosetting of mesophase pitches: experimental. Carbon '86: Proceedings of the 4th International Conference on Carbon, Baden-Baden, Germany, 37 (1986).
  18. Li DF, Wang HJ, Wang XK. Effect of microstructure on the modulus of PAN-based carbon fibers during high temperature treatment and hot stretching graphitization. J Mater Sci, 42, 4642 (2007). http://dx.doi.org/10.1007/s10853-006-0519-4.
  19. Tuinstra F, Koenig JL. Raman spectrum of graphite. J Chem Phys, 53, 1126 (1970). http://dx.doi.org/10.1063/1.1674108.
  20. Melanitis N, Tetlow PL, Galiotis C. Characterization of PAN-based carbon fibres with laser Raman spectroscopy. J Mater Sci, 31, 851 (1996). http://dx.doi.org/10.1007/BF00352882.
  21. Jin XD, Ni QQ, Fu YQ, Zhang L, Natsuki T. Electrospun nanocomposite polyacrylonitrile fibers containing carbon nanotubes and cobalt ferrite. Polym Compos, 33, 317 (2012). http://dx.doi. org/10.1002/pc.21251.
  22. McNally T, Potschke P, Halley P, Murphy M, Martin D, Bell SEJ, Brennan GP, Bein D, Lemoine P, Quinn JP. Polyethylene multiwalled carbon nanotube composites. Polymer, 46, 8222 (2005). http://dx.doi.org/10.1016/j.polymer.2005.06.094.
  23. Dong ZJ, Li XK, Yuan GM, Cui ZW, Cong Y, Westwood A. Synthesis in molten salts and formation reaction kinetics of tantalum carbide coatings on various carbon fibers. Surf Coat Technol, 212, 169 (2012). http://dx.doi.org/10.1016/j.surfcoat.2012.09.040.
  24. Watanabe F, Ishida S, Korai Y, Mochida I, Kato I, Sakai Y, Kamatsu M. Pitch-based carbon fiber of high compressive strength prepared from synthetic isotropic pitch containing mesophase spheres. Carbon, 37, 961 (1999). http://dx.doi.org/10.1016/S0008-6223(98)00251-6.
  25. Diez N, Alvarez P, Santamaria R, Blanco C, Menendez R, Granda M. Optimisation of the melt-spinning of anthracene oil-based pitch for isotropic carbon fibre preparation. Fuel Process Technol, 93, 99 (2012). http://dx.doi.org/10.1016/j.fuproc.2011.09.016.
  26. Guigon M, Oberlin A, Desarmot G. Microtexture and structure of some high tensile strength, PAN-based carbon fibres. Fibre Sci Technol, 20, 55 (1984). http://dx.doi.org/10.1016/0015-0568(84)90057-5.
  27. Guigon M, Oberlin A, Desarmot G. Microtexture and structure of some high-modulus, PAN-based carbon fibres. Fibre Sci Technol, 20, 177 (1984). http://dx.doi.org/10.1016/0015-0568(84)90040-X.
  28. Bright AA, Singer LS. The electronic and structural characteristics of carbon fibers from mesophase pitch. Carbon, 17, 59 (1979). http://dx.doi.org/10.1016/0008-6223(79)90071-X.
  29. Dumont M, Dourges MA, Bourrat X, Pailler R, Naslain R, Babot O, Birot M, Pillot JP. Carbonization behavior of modified synthetic mesophase pitches. Carbon, 43, 2277 (2005). http://dx.doi. org/10.1016/j.carbon.2005.04.007.

Cited by

  1. Superhydrophobic carbon-based materials: a review of synthesis, structure, and applications vol.15, pp.2, 2014, https://doi.org/10.5714/CL.2014.15.2.089
  2. Influence of Ozone Treatment on Oxidative Stabilization Behavior of Coal-tar-based Isotropic Pitch Fibers vol.51, pp.5, 2014, https://doi.org/10.12772/TSE.2014.51.265
  3. Pitch-based carbon fibers from coal tar or petroleum residue under the same processing condition vol.19, 2016, https://doi.org/10.5714/CL.2016.19.072
  4. Preparation and evaluation of isotropic and mesophase pitch-based carbon fibers using the pelletizing and continuous spinning process pp.1530-8057, 2018, https://doi.org/10.1177/1528083718763774