DOI QR코드

DOI QR Code

The Inhibitory Effects of Nelumbo nucifera Gaertner Extract on Melanogenesis

연자육 추출물의 멜라닌 합성 저해효과

  • 이준영 ((주)사임당화장품 기술연구소) ;
  • 임경란 ((주)사임당화장품 기술연구소) ;
  • 정택규 ((주)사임당화장품 기술연구소) ;
  • 윤경섭 ((주)사임당화장품 기술연구소)
  • Received : 2013.01.14
  • Accepted : 2013.04.25
  • Published : 2013.04.27

Abstract

In order to develop new skin whitening agents, we prepared the $CH_2Cl_2$ layer (NGC) and BuOH layer (NGB) of 75% EtOH extract of the Nelumbinis nucifera Gaertner. We measured their tyrosinase inhibitory activity in vitro and melanin synthesis inhibitory activity in B16-F1 melanoma cells. They did not show inhibitory activity against mushroom tyrosinase but showed melanin synthesis inhibitory activity in a dose-dependent manner. In a melanin synthesis inhibition assay, NGC and NGB suppressed melanin production up to 52% and 46% at a concentration of $100{\mu}g/mL$, respectively. To elucidate the mechanism of the inhibitory effects of NGC and NGB on melanogenesis, we measured the expression of melanogenesis-related proteins by western blot assay. As a result, NGC suppressed the expression of tyrosinase, tyrosinase related protein 1 (TRP-1), tyrosinase related protein 2 (TRP-2), phosphorylated cAMP responsive element binding (p-CREB) protein, and microphthalmia associated transcription factor (MITF). And NGB inhibited the protein expression of tyrosinase and MITF, but had no significant effect on TRP-1, TRP-2, and p-CREB expression. Moreover, NGB increased the expression of phosphorylated extracellular signal-regulated kinase (p-ERK). In addition, we examined the inhibitory effect on the glycosylation of tyrosinase. As a result, NGC and NGB inhibited the activity of ${\alpha}$-glucosidase in vitro and the glycosylation of tyrosinase in B16-F1 melanoma cells. From these results, we concluded that NGC and NGB could be used as active ingredients for skin whitening.

Keywords

References

  1. Hill, H. Z., W. Li, P. Xin, and D. L. Michell (1998) Melanin: A two edged sword? Pigment Cell Res. 10: 158-161.
  2. Seiberg, M., L. Babiarz, and C. B. Lin (2003) IL-41 the PAR-2 pathway is differentially expressed in skin of color. Pigment Cell Res. 16: 591-591.
  3. Busca, R. and R. Ballotti (2000) Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res. 13: 60-69. https://doi.org/10.1034/j.1600-0749.2000.130203.x
  4. Sassone, C. P. (1998) Coupling gene expression to cAMP signalling: Role of CREB and CREM. Int. J. Biochem. Cell B. 30: 27-38. https://doi.org/10.1016/S1357-2725(97)00093-9
  5. Bertolotto, C., R. Busca, P. Abbe, K. Bille, E. Aberdam, J. P. Ortonne, and R. Ballotti (1998) Different cis-acting elements are involved in the regulation of TRP1 and TRP2 promoter activities by cyclic AMP: pivotal role of M boxes (GTCATGTGCT) and of microphthalmia. Mol. Cell. Biol. 18: 694-702.
  6. Fuller, B. B., J. B. Lunsford, and D. S. Iman (1987) Alpha-melanocyte-stimulating hormone regulation of tyrosinase in Cloudman S-91 mouse melanoma cell cultures. J. Biol. Chem. 262: 4024-4033.
  7. Yokoyama, K., H. Suzki, K. Yasumoto, Y. Tomita, and S. Shibahara (1994) Molecular cloning and functional analysis of a cDNA coding for human DOPAchrome tautomerase/tyrosinase-related protein-2. Biochim. Biophys. Acta. 1217: 317-321. https://doi.org/10.1016/0167-4781(94)90292-5
  8. Bertolotto, C., P. Abbe, T. J. Hemesath, K. Bille, D. E. Fisher, J. P. Ortonne, and R. Ballotti (1998) Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J. Cell Biol. 142: 827-835. https://doi.org/10.1083/jcb.142.3.827
  9. Levy, C., M. Khaled, and D. E. Fisher (2006) MITF: Master regulator of melanocyte development and melanoma oncogene. Trends Mol. Med. 12: 406-414 . https://doi.org/10.1016/j.molmed.2006.07.008
  10. Yasumoto, K., K. Yokoyama, K. Takahashi, Y. Tomita, and S. Shibahara (1997) Functional analysis of microphthalmia-associated transcription factor in pigment cell-specific transcription of the human tyrosinase family genes. J. Biol. Chem. 272: 503-509. https://doi.org/10.1074/jbc.272.1.503
  11. Yavuzer, U., E. Keenan, P. Lowings, J. Vachtenheim, G. Currie, and C. R. Goding (1995) The microphthalmia gene product interacts with the retinoblastoma protein in vitro and is a target for deregulation of melanocyte-specific transcription. Oncogene 10: 123-134.
  12. Englaro, W., C. Bertolotto, R Busca, A. Brunet, G. Pages, J. P. Ortonne, and R. Ballotti (1998) Inhibition of the mitogen-activated protein kinase pathway triggers B16 melanoma cell differentiation. J. Biol. Chem. 273: 9966-9970. https://doi.org/10.1074/jbc.273.16.9966
  13. Kim, D. S., E. S. Hwang, J. E. Lee, S. Y. Kim, S. B. Kwon, and K. C. Park (2003) Sphingosine-1-phosphate decreases melanin synthesis via sustained ERK activation and subsequent MITF degradation. J. Cell Sci. 116: 1699-1706. https://doi.org/10.1242/jcs.00366
  14. Kim, D. S., S. Y. Kim, J. H. Chung, K. H. Kim, H. C. Eun, and K. C. Park (2002) Delayed ERK activation by ceramide reduces melanin synthesis in human melanocytes. Cell. Signal. 14: 779-785. https://doi.org/10.1016/S0898-6568(02)00024-4
  15. Englaro, W., R. Rezzonico, M. Durand-Clement, D. Lallemand, J. P. Ortonne, and R. Ballotti (1995) Mitogen-activated protein kinase pathway and AP-1 are activated during cAMP-induced melanogenesis in B-16 melanoma cells. J. Biol. Chem. 270: 24315-24320. https://doi.org/10.1074/jbc.270.41.24315
  16. Kobayashi, T., W. D. Vieira, B. Potterf, C. Sakai, G. Imokawa, and V. J. Hearing (1995) Modulation of melanogenic protein expression during the switch from euto pheomelanogenesis. J. Cell Sci. 108: 2301-2309.
  17. Kobayashi, T., K. Urabe, A. Winder, C. Jimenez-Cervantes, G. Imokawa, T. Brewington, F. Solano, J. C. Garcia-Borron, and V. J. Hearing (1994) Tyrosinase related protein 1 (TRP1) functions as a DHICA oxidase in melanin biosynthesis. EMBO J. 13: 5818-5825.
  18. Branza-Nichita, N., G. Negroiu, A. J. Petrescu, E. F. Garman, F. M. Platt, M. R. Wormald, R. A. Dwek, and S. M. Petrescu (2000). Mutations at critical N-glycosylation sites reduce tyrosinase activity by altering folding and quality control. J. Biol. Chem. 275: 8169-8175. https://doi.org/10.1074/jbc.275.11.8169
  19. Goochee, C. F. (1992) Bioprocess factors affecting glycoprotein oligosaccharide structure. Dev. Biol. Stand. 76: 95-104.
  20. Petrescu, A. J., T. D. Butters, G. Reinkensmeier, S. Petrescu, F. M. Platt, R. A. Dwek, and M. R. Wormal (1997) The solution NMR structure of glucosylated N-glycans involved in the early stages of glycoprotein biosynthesis and folding. EMBO J. 16: 4302-4310. https://doi.org/10.1093/emboj/16.14.4302
  21. Kornfeld, R. and S. Kornfeld (1985) Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54: 631-664. https://doi.org/10.1146/annurev.bi.54.070185.003215
  22. Winchester, B. and G. W. Fleet (1992) Amino-sugar glycosidase inhibitors: Versatile tools for glycobiologists. Glycobiology 2: 199-210. https://doi.org/10.1093/glycob/2.3.199
  23. Petrescu, S. M., A. J. Petrescu, H. N. Titu, R. A. Dwek, and F. M. Platt (1997) Inhibition of N-glycan processing in B16 melanoma cells results in inactivation of tyrosinase but does not prevent its transport to the melanosome. J. Biol. Chem. 272: 15796-15803. https://doi.org/10.1074/jbc.272.25.15796
  24. Branza-Nichita. N., A. J. Petrescu, R. A. Dwek, M. R. Wormald, F. M. Platt, and S. M. Petrescu (1999) Tyrosinase folding and copper loading in vivo: a crucial role for calnexin and alpha-glucosidase II. Biochem. Biophys. Res. Commun. 261: 720-725. https://doi.org/10.1006/bbrc.1999.1030
  25. Wang, Y. and M. J. Androlewicz (2000) Oligosaccharide trimming plays a role in the endoplasmic reticulum-associated degradation of tyrosinase. Biochem. Biophys. Res. Commun. 271: 22-27. https://doi.org/10.1006/bbrc.2000.2577
  26. Imokawa, G. and Y. Mishima (1984) Functional analysis of tyrosinase isozymes of cultured malignant melanoma cells during the recovery period following interrupted melanogenesis induced by glycosylation inhibitors. J. Invest. Dermatol. 83: 196-201. https://doi.org/10.1111/1523-1747.ep12263562
  27. Franchi, J., M. C. Coutadeur, C. Marteau, M. Mersel, and A. Kupferberg (2000) Depigmenting effects of calcium D-pantetheine-Ssulfonate on human melanocytes. Pigment Cell Res. 13: 165-171. https://doi.org/10.1034/j.1600-0749.2000.130308.x
  28. Aoki, H. M., O. Ifuku, and A. S. Zervos (1998) Identification of a new microphthalmia(Mi)-interacting protein, rKr2, involved in the regulation of melanogenesis. IFSCC. 1998: 67-78
  29. Seiberg, M., C. Paine, E. Sharlow, P. Andrade Gordon, M. Costanzo, M. Eisinger, and S. S. Shapiro (2000) The protease-activated receptor 2 regulates pigmentation via keratinocyte-melanocyte interaction. Exp. Cell Res. 254: 25-32. https://doi.org/10.1006/excr.1999.4692
  30. Negroiu, G., N. Branza-Nichita, A. J. Petrescu, R. A. Dwek, and S. M. Petrescu (1999) Protein specific N-glycosylation of tyrosinase and tyrosinase-related protein-1 in B16 mouse melanoma cells. Biochem. J. 344: 659-665. https://doi.org/10.1042/0264-6021:3440659
  31. Bensky, D. and A. Gamble (1993) Chinese Herbal Medicine; Materia Medica. 2nd ed., pp. 262. Eastland press, Seattle, WA, USA.
  32. Mukheriee, P. K., J. Das, R. Balasubramanian, K. Saha, M. Pal, and B. Saha (1995) Antidiarrhoeal evaluation of Nelumbo nucifera rhizome extract. Indian J. Pharm. 27: 262-264.
  33. Mukheriee, P. K., J. Das, K. Saha, M. Pal, and B. P. Saha (1996) Diuretic activity of the rhizomes of Nelumbo nucifera Gaertn. Phytother. Res. 10: 424-425. https://doi.org/10.1002/(SICI)1099-1573(199608)10:5<424::AID-PTR857>3.0.CO;2-3
  34. Mukheriee, P. K., K. Saha, J. Das, M. Pal, and B. P. Saha (1996) Antipyretic activity of Nelumbo nucifera rhizome extract. Indian J. Exp. Biol. 34, 275-276.
  35. Mukheriee, P. K. (2002) Quality control of herbal drugs-an approach to evaluation of botanicals, 604, Business Horizons, New Delhi, India.
  36. Mukheriee, P. K., S. N. Giri, K. Saha, M. Pal, and B. P. Saha (1995) Antifungal screening of Nelumbo nucifera (Nymphaeaceae) rhizome extract. Indian J. Microbiol. 35: 327-330.
  37. Mukheriee, P. K., R. Balasubramanian, K. Saha, M. Pal, and B. P. Saha (1995) Antibacterial efficiency of Nelumbo nucifera (Nymphaeaceae) rhizome extract. Indian Drugs 32: 274-276.
  38. Mukheriee, P. K., S. R. Pal, K. Saha, and B. P. Saha (1995) Hypoglycemic activity of Nelumbo nucifera rhizome (methanolic extract) in streptozotocin induced diabetic rats. Phytother. Res. 9: 522-524. https://doi.org/10.1002/ptr.2650090712
  39. Cho, E. J., T. Yokozawa, D. Y. Rhyu, S. C. Kim, N. Shibahara, and J. C. Park (2003) Study on the inhibitory effects of Korean medicinal plants and their main compounds on the 1,1-diphenyl-2-picrylhydrazyl radical. Phytomedicine 10: 544-551. https://doi.org/10.1078/094471103322331520
  40. Hu, M. and L. H. Skibsted (2002) Antioxidative capacity of rhizome extract and rhizome knot extract of edible lotus (Nelumbo nuficera). Food Chem. 76: 327-333. https://doi.org/10.1016/S0308-8146(01)00280-1
  41. Jung, H. A., J. E. Kim, H. Y. Chung, and J. S. Choi (2003) Antioxidant principles of Nelumbo nucifera Stamens. Arch. Pharm. Res. 26: 279-285. https://doi.org/10.1007/BF02976956
  42. Park, J. H., D. W. Kim, B. G. Lee, and K. I. Byun (2010) Antioxidant activities and inhibitory effect on oxidative DNA damage of Nelumbinis semen extracts. Korean J. Herbol. 25: 55-59.
  43. Seo, J. H., Y. H. Choi, M. Y. Yoo, K. S. Hong, B. H. Lee, G. H. Yon, Y. S. Kim, Y. K. Kim, and S. Y. Ryu (2006) Isolation of dihydrophaseic acid from seed extract of Nelumbo nucifera. Korean J. Pharmacogn. 37: 290-293.
  44. Song, G. S., B. Y. Ahn, K. S. Lee, L. K. Maeng, and D. S. Choi (1997) Effect of hot water extracts from medical plants on the mutagenicity of indirect mutagens. J. Food Sci. Technol. 29: 1288- 1294.
  45. Lee, J. W., M. C. Hong, M. K. Shin, and H. S. Bae (2006) Comparison of Nelumbinis semen extract with hypericum perforatum and fluoxetine in animal model of depression. Korean J. Ori. Med. Physiol. Pathol. 20: 830-843.
  46. Kim, H. G. and M. S. Oh (2009) Protective effects of Nelumbinis Semen against neurotoxicity induced by 6-hydroxydopamine in dopaminergic cells. Korean J. Herbol. 24: 87-92.
  47. Ann, C. J., G. H. Lee, Y. S. Kim, M. C. Hong, H. S. Bae, J. H. Kim, and M. G. Shin (2010) Effect of Nelumbinis semen on the recovery of the cardiac muscle activity by proteome analysis. Korean J. Ori. Med. Physiol. Pathol. 24: 962-969.
  48. Kim, S. H. and J. W. Choi (2011) Action mechanism of anticonvulsive effect of Nelumbo Nucifera in pentylenetetrazole-induced animal models. Korean J. Ori. Med. Physiol. Pathol. 25: 614-619.
  49. Luo, X. and S. Yao (2005) Stimultaneous analysis of N-nornuciferine, O-nornuciferine, nuciferine, and roemerine in leaves of Nelumbo nucifera Gaertn by high-performance liquid chromatography- photodiode array detection- electrospray mass spectrometry. Analytica. Chimica. Acta. 538: 129-133. https://doi.org/10.1016/j.aca.2005.01.066
  50. Wu, S. and Y. Pan (2004) Prepatative counter-current chromatography isolation of liensinine and its analogues from embryo of the seed of Nelumbo nucifera Gaertn using upright coil planet centrifuge with for multilayer coil connected in series. J. Chromatogr. A. 1041: 153-162. https://doi.org/10.1016/j.chroma.2004.05.003
  51. Kashiwada, Y., A. Aoshima, Y. Ikeshiro, Y. P. Chen, H. Furukawa, M. Itoigawa, T. Fujioka, K. Mihashi, L. M. Cowedtino, S. L. Morris-Natschke, and K. H. Lee (2005) Anti-HIV benzylisoquinoline alkaloids and flavonoids from the leaves of Nelumbo nucifera and structure-activity correlations with related alkaloids. Bioorg. Med. Chem. 13: 443-448. https://doi.org/10.1016/j.bmc.2004.10.020
  52. Kim, J. S., S. M. Cho, J. H. Kim, and M. W. Lee (2001) Phenolic compounds from the node of Lotus Rhizome. Yakhak Hoeji. 45: 599-603.
  53. Mosmann, T. (1983) Rapid colorimetric assay for the cellular growth and survival: application to proliferation and cytotoxic assay. J. Immun. Methods 65: 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  54. Oka, M., M. Ichihashi, and A. K. Chakraborty (1996) Enhanced expression of protein kinase C subspecies in melanogenic compartments in B16 melanoma cells by UVB or MSH. J. Invest. Dermatol. 106: 377-378. https://doi.org/10.1111/1523-1747.ep12343168
  55. Angelov, A., M. Putyrski, and W. Liebl (2006) Molecular and biochemical characterization of alpha-glucosidase and alpha-mannosidase and their clustered genes from the thermoacidophilic archaeon Picrophilus torridus. J. Bacteriol. 188: 7123-7131. https://doi.org/10.1128/JB.00757-06
  56. Nakamura, S., S. Nakashima, G. Tanabe, Y. Oda, N. Yokota, K. Fujimoto, T. Matsumoto, R. Sakuma, T. Ohta, K. Ogawa, S. Nishida, H. Miki, H. Matsuda, O. Muraoka, and M. Yoshikawa (2013) Alkaloid constituents from flower buds and leaves of sacred lotus (Nelumbo nucifera, Nymphaeaceae) with melanogenesis inhibitory activity in B16 melanoma cells. Bioorg. Med. Chem. 21: 779-787. https://doi.org/10.1016/j.bmc.2012.11.038
  57. Xu, W., L. Gong, M. M. Haddad, O. Bischof, J. Campisi, E. T. Yeh, and E. E. Medrano (2000) Regulation of microphthalmia-associated transcription factor MITF protein levels by association with the ubiquitin-conjugating enzyme hUBC9. Exp. Cell Res. 255: 135-143. https://doi.org/10.1006/excr.2000.4803
  58. Choi, H., S. Ahn, H. Chang, N. S. Cho, K. Joo, B. G. Lee, I. Chang, and J. S. Hwang (2007) Influence of N-glycan processing disruption on tyrosinase and melanin synthesis in $HM_{3}KO$ melanoma cells. Exp. Dermatol. 16: 110-117. https://doi.org/10.1111/j.1600-0625.2006.00515.x
  59. Mishima, Y. and G. Imokawa (1983) Selective aberration and pigment loss in melanosomes of malignant melanoma cells in vitro by glydosylation inhibitors: Premelanosomes as glycoprotein. J. Invest. Dermatol. 81: 106-114. https://doi.org/10.1111/1523-1747.ep12542192
  60. Halaban, R. E., E. Cheng, Y. Zhang, G. Moellmann, D. Hanlon, M. Michalak, V. Setaluri, and D. N. Hebert (1997) Aberrant retention of tyrosinase in the endoplasmic reticulum mediates accelerated degradation of the enzyme and contributes to the dedifferentiated phenotype of amelanotic melanoma cells. Proc. Natl. Acad. Sci. USA 94: 6210-6215. https://doi.org/10.1073/pnas.94.12.6210

Cited by

  1. Effect of Medicinal Herb Prepared through Traditional Antidiabetic Prescription on α-Glucosidase Activity and Evaluation Method for Anti-Melanogenesis Agents Using α-Glucosidase Activity vol.44, pp.7, 2015, https://doi.org/10.3746/jkfn.2015.44.7.993