DOI QR코드

DOI QR Code

Electrical Properties and Heating Performance of Polyurethane Hybrid Nanocomposite Films Containing Graphite and MWNTs

Graphite와 MWNT를 함유한 폴리우레탄 하이브리드 나노복합체 필름의 전기적 특성 및 발열 성능 평가

  • Jee, Min Ho (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Lee, Jong Hwan (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Lee, In Sung (Korea Textile Machinery Research Institute) ;
  • Baik, Doo Hyun (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
  • 지민호 (충남대학교 유기소재.섬유시스템공학과) ;
  • 이종환 (충남대학교 유기소재.섬유시스템공학과) ;
  • 이인성 (한국섬유기계연구소) ;
  • 백두현 (충남대학교 유기소재.섬유시스템공학과)
  • Received : 2013.02.24
  • Accepted : 2013.04.05
  • Published : 2013.04.30

Abstract

Polyurethane(PU) hybrid nanocomposite films containing graphite and multiwalled carbon nanotubes (MWNTs) were prepared by a solution-casting method, and their electrical properties and heating performance were investigated as a function of conducting hybrid filler content. The electrical resistivity of the PU/hybrid nanocomposite films decreased slightly from $2.40{\times}10^2{\Omega}cm$ to $2.79{\times}10^1{\Omega}cm$ with increasing the hybrid filler content (5.0~9.0 wt%). The current-voltage (I-V) characteristics of these nanocomposite films indicate a significant increase in current level with 9.0 wt% hybrid filler content, which reflects the fact that above the percolation threshold, the conduction mechanism in the nanocomposite films changes from tunneling conduction (nonlinear) to ohmic conduction due to the direct contact between the graphite and the MWNTs (linear). As a result, the PU/hybrid nanocomposite films containing 9.0 wt% hybrid filler with 4.5 wt% graphite and 4.5 wt% MWNTs can be quickly heated from room temperature to $48.8^{\circ}C$ within 80 s by applying a DC voltage of 30 V, whereas the PU nanocomposite films containing 30.0 wt% graphite or 5.0 wt% MWNTs could only be heated to $39.2^{\circ}C$ and $30.6^{\circ}C$, respectively.

Keywords

References

  1. J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, and Y. Chen, “Electromagnetic Interference Shielding of Graphene/Epoxy Composites”, Carbon, 2009, 47(4), 922-925. https://doi.org/10.1016/j.carbon.2008.12.038
  2. M. Arjmand, T. Apperley, M. Okoniewski, and U. Sundararaj, “Comparative Study of Electomagnetic Interference Shielding Properties of Injection Molded Versus Compression Molded Multi-walled Carbon Nanotube/Polystyrene Composites”, Carbon, 2012, 50(14), 5126-5134. https://doi.org/10.1016/j.carbon.2012.06.053
  3. S. Konwer, J. Maiti, and S. Dolui, “Preparation and Optical/ Electrical/Electochemical Properties of Expanded Graphitefilled Polypyrrole Nanocomposite”, Mater Chem Phys, 2011, 128, 283-290. https://doi.org/10.1016/j.matchemphys.2011.03.013
  4. L. Flandin, Y. Brechet, and J. Cavaile, "Electrically Conductive Polymer Nanocomposites as Deformation Sensors", Compos Sci Technol, 2001, 61, 895-901. https://doi.org/10.1016/S0266-3538(00)00175-5
  5. S. Qu and S. C. Wong, “Piezoresistive Behavior of Polymer Reinforced by Expanded Graphite”, Compos Sci Technol, 2007, 67, 231-237. https://doi.org/10.1016/j.compscitech.2006.08.008
  6. B. S. Shim, W. Chen, C. Doty, C. Xu, and N. A. Kotov, “Smart Electronic Yarns and Wearable Fabrics for Human Biomonitoring Made by Carbon Nanotube with Polyelectrolytes”, Nano Lett, 2008, 8, 4151-4157. https://doi.org/10.1021/nl801495p
  7. D. S. Hecht, L. Hu, and G. Grüner, “Electronic Properties of Carbon Nanotube/Fabric Composites”, Curr Appl Phys, 2000, 7, 60-63.
  8. H. C. Neizert, L. Vertuccio, and A. Sorrentino, “Epoxy/MWCNT Composite as Temperature Sensor and Electrical Heating Element”, IEEE T Nanotechnol, 2011, 10(4), 688-693. https://doi.org/10.1109/TNANO.2010.2068307
  9. M. Moniruzzaman and K. I. Winey, “Polymer Nanocomposites Containing Carbon Nanotubes”, Macromolecules, 2006, 39, 5194-5205. https://doi.org/10.1021/ma060733p
  10. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, "Graphene-based Composite Materials", Nature, 442, 282-286.
  11. W. Bauhofer and J. Z. Kovacs, “A Review and Analysis of Electrical Percolation in Carbon Nanotube Polymer Composites”, Compos Sci Technol, 2009, 69, 1486-1498. https://doi.org/10.1016/j.compscitech.2008.06.018
  12. Y. P. Mamunya, Y. V. Muzychenko, P. Pissis, E. V. Lebedev, and M. I. Shut, “Percolation Phenomena in Polymers Containing Dispersed Iron”, Polym Eng Sci, 2002, 42(1), 90-100. https://doi.org/10.1002/pen.10930
  13. P. C. Ramamurthy, W. R. Harrell, R. V. Gregory, B. Sadanadan, and A. M. Rao, “Polyaniline/Carbon Nanotube Composite Schottky Contacts”, Polym Eng Sci, 2004, 44(1), 28-33. https://doi.org/10.1002/pen.20002
  14. I. M. Afanasov, V. A. Morozov, A. V. Kepman, S. G. Ionov, A. N. Seleznev, G. V. Temdeloo, and V. V. Avdeev, “Preparation, Electrical and Thermal Properties of New Exfoliated Graphite-based Composites”, Carbon, 2009, 47(1), 263-270. https://doi.org/10.1016/j.carbon.2008.10.004
  15. J. N. Colman, U. Khan, W. J. Blau, and Y. K. Gun'ko, "Small but Strong: A Review of the Mechanical Properties of Carbon Nanotube-Polymer Composites", Carbon, 2006, 44, 1624-1652. https://doi.org/10.1016/j.carbon.2006.02.038
  16. K. M. Chu, D. G. Kim, Y. C. Sohn, S. E. Lee, C. Y. Moon, and S. H. Park, “Electrical and Thermal Properties of Carbon-Nanotube Composite for Flexible Electric Heating-Unit Applications”, IEEE Electr Device L, 2013, 34(5), 668-670. https://doi.org/10.1109/LED.2013.2249493
  17. L. Liu, S. Peng, X. Niu, and W. Wen, "Microheaters Fabricated from a Conducting Composite", Appl Phys Lett, 2006, 89, 223521-1-223521-3. https://doi.org/10.1063/1.2400065
  18. H. Lu, K. Yu, S. Sun, Y. Liu, and J. Leng, “Mechanical and Shape-Memory Behavior of Shape-Memory Polymer Composites with Hybrid Fillers”, Polym Int, 2010, 59, 766-771.
  19. S. Y. Lee, J. H. Cho, and Y. H. Kim, "Electrical Heating Effect and Water Repelling Property of Fabrics Spray-Coated with Mixed Solution of Carbon Nanotubes and Hyperbranched Polyurethane", Text Sci Eng, 2010, 47(3), 184-190.
  20. E. Lee, J. H. Lee, Y. H. Kim, and E. O. Kim, "Conductive Polypyrrole/Polyester Composite Fabrics for Heating Element", Text Sci Eng, 2010, 47(5), 345-351.
  21. C. S. Kang, M. H. Jee, and D. H. Baik, "Mechanical and Electrical Properties of Polyurethane Hybrid Nanocomposites Containing MWNT and Graphite as Conducting Nanoparticles", Text Sci Eng, 2012, 49(3), 174-180. https://doi.org/10.12772/TSE.2012.49.3.174
  22. N. K. Srivastave and R. M. Mehra, "Study of Structural, Electical, and Dielectric Properties of Polystyrene/Foliated Graphite Nanocomposite Developed Via In Situ Polymerization", J Appl Polym Sci, 2008, 109, 3991-3999. https://doi.org/10.1002/app.28499
  23. A. Choudhury, “Synthesis and Characterization of Poly(otoluidine)/ Functionalized Multi-walled Carbon Nanotubes Nanocomposites with Improved Electrical Conductivity”, Mater Chem Phys, 2011, 130, 231-236. https://doi.org/10.1016/j.matchemphys.2011.06.034

Cited by

  1. Characterization of carbon nanofiber (CNF)/polymer composite coated on cotton fabrics prepared with various circuit patterns vol.5, pp.1, 2018, https://doi.org/10.1186/s40691-017-0120-2
  2. Preparation and Characterization of Carbon Nanofiber Composite Coated Fabric-Heating Elements vol.39, pp.2, 2015, https://doi.org/10.5850/JKSCT.2015.39.2.247
  3. Electrical and Resistance Heating Properties of Carbon Fiber Heating Element for Car Seat vol.27, pp.2, 2016, https://doi.org/10.14478/ace.2016.1018
  4. Conductivity, superhydrophobicity and mechanical properties of cotton fabric treated with polypyrrole by in-situ polymerization using the binary oxidants ammonium Peroxodisulfate and ferric chloride pp.1746-7748, 2019, https://doi.org/10.1177/0040517518792732