DOI QR코드

DOI QR Code

Parametric Analysis on Ultimate Behavior of Cylindrical GFRP Septic Tank

원통형 GFRP 개인하수 처리시설의 극한거동에 대한 매개변수해석

  • 김성보 (충북대학교 토목공학과) ;
  • 조광제 (충북대학교 토목공학과)
  • Received : 2013.04.12
  • Accepted : 2013.06.17
  • Published : 2013.07.30

Abstract

The parametric analysis on ultimate behavior of buried cylindrical GFRP(Glass Fiber Reinforced Polymer) septic tank was presented. Two kinds of F.E. analysis model(soil-spring model and 3D full model) was constructed. The ultimate behavior of septic tank was investigated according to the size of stiffened steel ring and properties of underground soil. Ramberg-Osgood model and Druker-Prager model were used for material nonlinear characteristics of GFRP septic tank and soil, respectively. The diameter and thickness of stiffened steel ring inside septic tank, elastic modulus and internal friction angle of soil were selected for parametric variables. The ultimate behavior of septic tank, load-displacement, axial and hoop strain, were calculated and investigated.

원통형 GFRP 개인하수 처리시설의 극한거동에 대한 매개변수해석을 수행하였다. 지반을 비선형 스프링으로 대체한 해석모델과 3차원 고체요소를 적용한 두 가지 해석모델이 작성되었다. 보강링의 형태와 지반조건의 변화에 따른 개인하수처리시설의 극한거동이 분석되었다. Ramberg-Osgood 모델과 Druker-Prager 모델이 각각 GFRP 및 지반의 비선형성을 나타내기 위하여 적용되었다. 원통형 개인하수처리시설 내부에 설치된 강관 보강링의 직경과 두께 및 지반 탄성계수 및 내부마찰각 등을 매개변수로 하여 하중-변위 관계, 축방향 변형률 및 후프방향 변형률 등이 유한요소해석을 통하여 도출되었고 여러 매개변수들이 강관으로 보강된 개인하수처리시설의 극한강도에 미치는 영향들이 분석되었다.

Keywords

References

  1. Drucker, D. C. and Prager, W. (1952). "Soil mechanics and plastic analysis for limit design." Quarterly of Applied Mathematics, Vol. 10, No. 2, pp. 157-165. https://doi.org/10.1090/qam/48291
  2. Jo, K. J. and Kim, S. B. (2012). "Design of high strength underground FRP septic tank stiffend by circular steel pipe." J. Korean Society of Civil Engineering, 32(3A), pp. 171-181 (in Korean).
  3. Ministry of Environment. (2011). Standard of structural and material performance of underground septic tank, Code of sewerage 58 (in Korean).
  4. George Abdel-Sayed. (1978). "Stability of flexible conduits embedded in soil." Canadian J. Civil Eng., 5(33), pp. 324-334. https://doi.org/10.1139/l78-037
  5. Helwany, Sam. (2007). Applied soil mechanics with ABAQUS applications, John Wiley & Sons.
  6. Medhat Ghobrial and George Abdel-Sayed. (1985). "Inelastic buckling of soil-steel structures." Transportation Research Board, pp. 7-14.
  7. Oh, J. H. (1999). Design and construction of soil retaining, Engineers (in Korean).
  8. Okeagu, B. N. and Abdel-Sayed, G. (1984). "Coefficients of soil reaction for buried flexible conduits." Journal of Geotechnical Engineering, ASCE, Vol. 110, pp. 908-922. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:7(908)
  9. Ramberg, W. and Osgood, W. R. (1943). "Description of stressstrain surves by three parameters." Technical Note No.902, National Advisory Committee For Aeronautics, Washington DC.

Cited by

  1. Ultimate Behavior of GFRP Shell Structure Stiffened by Steel Pipe Ring vol.26, pp.3, 2014, https://doi.org/10.7781/kjoss.2014.26.3.219