DOI QR코드

DOI QR Code

Retardation Effect on the Breach of the Earth Filled Embankment Using the Stiffener During Overtopping

흙댐 제체의 보강재 설치에 따른 월류붕괴 지연효과

  • 주요한 (국립재난안전연구원 방재연구실) ;
  • 여창건 (서울연구원 안전환경연구실) ;
  • 이승오 (홍익대학교 건설도시공학부)
  • Received : 2012.06.15
  • Accepted : 2013.04.17
  • Published : 2013.07.30

Abstract

Most embankment of the reservoirs (99.1 %) have been constructed in the earth filled type in Korea because the construction of this type is less expensive and simpler than others such as concrete one. However, it has to be reinforced the slope to prevent the breach due to overtopping or piping under unexpected flood conditions. This study has been analyzed the retardation effect using three types (L, T, $L^*$ shape) of stiffener in order to reinforce embankment when they are collapsed by overtopping flow. Experimental results showed that L-type stiffener is the most effective in delaying the breaching of embankment and reducing the soil erosion when compared with others. The reinforced embankment breaching showed that time delay was occurred about 1.73 to 2.29 times and the peak flowrate was reduced compared to non-stiffener embankments due to energy dissipation by collision and less soil erosion. The embankment breaching mostly leads to major damages because of the lack of repair time. Thus, since these stiffeners can resist the rapid breach, it would be possible to earn the time to emergency repair and lifesaving, as well as reduction of damages of embankment in downward region with decreasing peak flowrate. Results from this study would be used for the basis when establishing the emergency action plan for the reservoirs on the verge of hazard.

현재 국내 저수지의 대부분(99.1 %)은 흙댐으로 이러한 형식은 건설비용이 저렴하고 다른 시공보다 시공성이 용이하여 많은 저수지 건설에 채택되었다. 그러나 흙댐은 월류 침투 현상에 취약하여 설계 홍수량을 초과한 홍수 발생 시 붕괴가능성이 높은 단점이 있다. 본 연구에서는 수리실험을 통해 이러한 흙댐 제체에 월류 붕괴가 발생할 경우에 대하여 제체 사면에 설치한 L형 T형 $L^*$형의 보강재 형태에 따른 붕괴 양상 변화를 분석하고, 무보강 제체에 비하여 보강재 설치 제체에서 붕괴지연으로 인한 피해감소 효과를 분석하였다. 그 결과 붕괴부에서 발생하는 흐름이 보강재와 충돌하여 분산됨으로 인해 에너지 감세효과를 갖게 되어 토사의 침식속도가 감소하고 이에 따른 붕괴발달 속도가 지연되는 현상이 관찰되었다. 이러한 연구결과에 따라 보강재의 붕괴지연효과를 무보강 제체와 비교할 경우, 붕괴 발생에서 붕괴종료까지 약 1.73~2.29 배의 시간지연이 발생하였으며 첨두 유출량의 감소효과가 나타났다. 저수지 제체 붕괴는 붕괴부의 급속한 발달로 인해 이를 긴급히 보수하는 시간이 부족하여 큰 피해로 이어지게 된다. 사면에 보강재를 설치한 경우 제체 붕괴 지연효과로 인하여 긴급보수시간 및 인명구조시간의 확보가 가능하며, 첨두유출량 감소로 댐 하류부의 피해를 감소시키는 효과가 있어 저수지 붕괴에 대한 비상대처계획 수립시 기초자료로 활용할 수 있을 것으로 판단된다.

Keywords

References

  1. Cristofano, E. A. (1965). Method of computing erosion rate for failure of earthfill dams, Denver, CO(U.S. Bureau of Reclamation).
  2. Coleman, S. E., Andrews, D. P. and Webby, M. G. (2002). "Overtopping breaching of noncohesive homogeneous embank- ments." Journal of Hydraulic Engineering, Vol. 128, Issue 9, pp. 829-838. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:9(829)
  3. Chinnarasri, C., Tingsanchali, T., Weesakul, S. and Wongwises, S. (2003). "Flow patterns and damage of dike overtopping." Journal of Sediment Research, Vol. 18, No. 4, pp. 301-309.
  4. Darrel, T., Sherry, H. and Gregory, H. (2006). "Breach widening observations related to clay core earthen embankment tests." Proceedings of the Association of State Dam Safety Officials Annual Conference, pp. 608-621.
  5. Federal Energy Regulatory Commission. (FERC). (1987). Engineering guidelines for the evaluation of hydropower projects, FERC 0119-1, Office of Hydropower Licensing, July 1987, p. 9.
  6. Fread, D. L. (1984). DAMBRK: The NWS dam break flood forecasting model, National Weather Service, Office of Hydrology, Maryland.
  7. Froehlich, D. C. (1995). "Embankment dam breach parameters revisitied." Proc., 1st Int. Conf. on Water Resources Engineering, ASCE, New York, pp. 887-891.
  8. Froehlich, D. C. (2008). "Embankment dam breach parameters and their uncertainties." Journal of Hydraulic Engineering, Vol. 134, Issue 12, pp. 1708-1721. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:12(1708)
  9. Han, K. Y., Lee, J. T. and Lee. W. H. (1985). "An analysis of outflow hydrograph resulting from an earth Dam-Break." Journal of Korean Society of Civil Engineers, KSCE, Vol. 5, No. 2, pp. 41-50 (in Korean).
  10. Han River Flood Control Office (HRFCO). (2011). Reservoir facility specification in Korea, Water Management Information System(WAMIS), [http://www.wamis.go.kr/WKS/WKS_ARSSAS_ LST.ASPX] (in Korean).
  11. Hahn, W., Hanson, G. J. and Cook, K. R. (2000). "Breach morphology observations of embankment overtopping tests." Proceedings of the 2000 Joint Conference on Water Resources Engineering and Water Resources Planning and Management, ASCE, July 30-Aug. 2, MN, USA.
  12. Johnson, F. A. and Illes, P. (1976). A classification of dam failures, International Water Power and Dam Construction, December 1976, pp. 43-45.
  13. Kim, J. H. (2001). "Analysis on embankment failure due to overflow." Chung-Ang Journal of Environmental Science, Institute of Environmental Science and Construction Chung-Ang University, Vol. 12, No. 2, pp. 97-107 (in Korean).
  14. Lee, D. W. and Noh, J. J. (2012). "Behavior of failure of agricultural reservoir embankment due to overtopping." Journal of Agricultural Science, Vol. 39, No. 3, pp. 427-439 (in Korean).
  15. Lee, S. T. and Lee, J. T. (2001). "An experimental study on the collapse phase of a river levees(I) -effects of the geometric characteristics of cross section." Journal of Korea Water Resources Association, KWRA, Vol. 34, No. 2, pp. 141-154 (in Korean).
  16. Morris, M. (2005) Impact final technical report, HR Wallingford, UK.
  17. McDonald, T. and Langridge-Monopolis, J. (1984). "Breaching characteristics of dam failures." Journal of Hydraulics Engineering, Vol. 110, Issue 5, pp. 567-586. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:5(567)
  18. Ministry for Food, Agriculture, Forestry and Fisheries (MIFAFF). (2008). Yearbook of agricultural land and water development statistics, pp. 287-344 (in Korean).
  19. National Emergency Management Agency (NEMA). (2009). Development of embankment protection method on overflowing reservoir by waterproof mat, KFI-2008-Mt-00018 (in Korean).
  20. Oh, N. S. and Sonu, J. H. (1989). "A study on the radual reach of earth dam." Journal of Korea Water Resources Association, KWRA, Vol. 22, No. 2, pp. 213-221 (in Korean).
  21. Rural Research Institute. (2004). Improving the hydraulic and structural safety of reservoir spillways for flood (in Korean).
  22. Shim, J. H., Baek, M. H., Park, D. K., Lee, H. J., Park, B. C. and Kim, T. H. (2002). The field survey report of damages caused by the Typhoon RUSA in 2002, NIDP-2002-02, National Institute for Disaster Prevention, Seoul, Korea (in Korean).
  23. Singh, K. P. and Snorrason, A. (1982). Sensitivity of outflow peaks and flood stages to the selection of dam breach parameters and simulation models, State Water Survey (SWS) Contract Report 288, Illinois Deportment of Energy and Natural Resources, SWS Division, Surface Water at the University of Illinois, p. 179.
  24. Singh, K. P. and Snorrason, A. (1984). "Sensitivity of outflow peaks and flood stages to the selection of dam breach parameters and simulation models." Journal of Hydrology, Vol. 68, pp. 295-310. https://doi.org/10.1016/0022-1694(84)90217-8
  25. Singh, V. P. and Scarlatos, P. D. (1988). "Analysis of radual Earth-Dam failure." Journal of Hydraulics Engineering, Vol. 114, Issue 1, pp. 21-42. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:1(21)
  26. SJBNEWS. (2011). [http://www.sjbnews.com/news/articleView. html?idxno=375554] (in Korean).
  27. Von Thun, J. L. and Gillette, D. R. (1990). "Guidance on breach parameters, unpublished internal document." U. S. Bureau of Reclamation, Denver, Colorado, March 13, 1990, p. 17.

Cited by

  1. Resilience Assessment of Dams’ Flood-Control Service vol.34, pp.6, 2014, https://doi.org/10.12652/Ksce.2014.34.6.1919
  2. Behavior of Failure on Agricultural Reservoirs Embankment by Riprap Reinforcement Method vol.56, pp.6, 2014, https://doi.org/10.5389/KSAE.2014.56.6.063
  3. Safety Evaluation of Agricultural Reservoirs due to Raising Embankment by Field Monitoring and Numerical Analysis vol.58, pp.2, 2016, https://doi.org/10.5389/KSAE.2016.58.2.031
  4. Experimental Studies on the Stability Assessment of a Levee Using Reinforced Soil Based on a Biopolymer vol.10, pp.8, 2018, https://doi.org/10.3390/w10081059