DOI QR코드

DOI QR Code

A novel drying process for oil adsorption of expanded graphite

  • Received : 2013.05.03
  • Accepted : 2013.06.27
  • Published : 2013.07.31

Abstract

Expanded graphite (EG) was prepared using a drying process for application as an oil-adsorbent: the morphology, expansion volume, and oil absorption capacity of the EG were investigated. The expanded volume of the EG increased with an increasing reaction time and heat treatment temperature. The oil adsorption capacity of the EG was 45 g of n-dodecane per 1 g of EG. It is noted that the drying process of EG is a useful technique for a new oil-adsorbent.

Keywords

References

  1. Balima F, Pischedda V, Le Floch S, Brulet A, Lindner P, Duclaux L, San-Miguel A. An in situ small angle neutron scattering study of expanded graphite under a uniaxial stress. Carbon, 57, 460 (2013). http://dx.doi.org/10.1016/j.carbon.2013.02.019.
  2. Dittrich B, Wartig KA, Hofmann D, Mulhaupt R, Schartel B. Flame retardancy through carbon nanomaterials: carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene. Polym Degrad Stab, 98, 1495 (2013). http://dx.doi.org/10.1016/j.polymdegradstab.2013.04.009.
  3. Park SJ, Kim KS. A study on oil adsorption of expanded graphites. Korean Chem Eng Res, 42, 362 (2004).
  4. Park SJ, Kim KS, Hong SK. Preparation and characterization of expanded graphites by wet process. Hwahak Konghak, 41, 802 (2003).
  5. Ajalesh Balachandran N, Philip K, Rani J. Effect of expanded graphite on thermal, mechanical and dielectric properties of ethylene-propylene-diene terpolymer/hexa fluoropropylene-vinylidinefluoride dipolymer rubber blends. Eur Polym J, 49, 247 (2013). http://dx.doi.org/10.1016/j.eurpolymj.2012.08.014.
  6. Sever K, Tavman IH, Seki Y, Turgut A, Omastova M, Ozdemir I. Electrical and mechanical properties of expanded graphite/high density polyethylene nanocomposites. Composites B, 53, 226 (2013). http://dx.doi.org/10.1016/j.compositesb.2013.04.069.
  7. Piana F, Pionteck J. Effect of the melt processing conditions on the conductive paths formation in thermoplastic polyurethane/expanded graphite (TPU/EG) composites. Compos Sci Technol, 80, 39 (2013). http://dx.doi.org/10.1016/j.compscitech.2013.03.002.
  8. Toyoda M, Inagaki M. Heavy oil sorption using exfoliated graphite: new application of exfoliated graphite to protect heavy oil pollution. Carbon, 38, 199 (2000). http://dx.doi.org/10.1016/S0008-6223(99)00174-8.
  9. Zheng YP, Wang HN, Kang FY, Wang LN, Inagaki M. Sorption capacity of exfoliated graphite for oils-sorption in and among wormlike particles. Carbon, 42, 2603 (2004). http://dx.doi.org/10.1016/j.carbon.2004.05.041.
  10. Wang LW, Tamainot-Telto Z, Metcalf SJ, Critoph RE, Wang RZ. Anisotropic thermal conductivity and permeability of compacted expanded natural graphite. Appl Therm Eng, 30, 1805 (2010). http://dx.doi.org/10.1016/j.applthermaleng.2010.04.014.
  11. Krawczyk P. Effect of ozone treatment on properties of expanded graphite. Chem Eng J, 172, 1096 (2011). http://dx.doi.org/10.1016/j.cej.2011.06.005.
  12. Jihui L, Huifang D, Qian L, Shufen L. Preparation of sulfur-free expanded graphite with $320\;{\mu}m$ mesh of flake graphite. Mater Lett, 60, 3927 (2006). http://dx.doi.org/10.1016/j.matlet.2006.06.066.
  13. Li S, Tian S, Du C, He C, Cen C, Xiong Y. Vaseline-loaded expanded graphite as a new adsorbent for toluene. Chem Eng J, 162, 546 (2010). http://dx.doi.org/10.1016/j.cej.2010.05.059.
  14. Li S, Tian S, Feng Y, Lei J, Wang P, Xiong Y. A comparative investigation on absorption performances of three expanded graphitebased complex materials for toluene. J Hazard Mater, 183, 506 (2010). http://dx.doi.org/10.1016/j.jhazmat.2010.07.052.

Cited by

  1. A review: methane capture by nanoporous carbon materials for automobiles vol.17, pp.1, 2016, https://doi.org/10.5714/CL.2016.17.1.018