DOI QR코드

DOI QR Code

Technical Review of Specimens under Ultrasonic Fatigue Test

초음파 피로시험편 결정법의 연구동향

  • Received : 2013.01.22
  • Accepted : 2013.03.25
  • Published : 2013.08.01

Abstract

An accelerated ultrasonic fatigue test(UFT) has been used for analyzing very high cycle fatigue( VHCF, $N_f$ > $10^7$). This study reviews how the test specimen is to be determined. We focus on UFT using a resonance of 20 kHz. The specimen geometry is determined by selecting test materials by using a dynamic Young's modulus and wavelength of 20 kHz. The dynamic Young's modulus is calculated at the resonant frequency. Through a resonant vibration test at 20 kHz, the length of the specimen is calculated. By determining the shape of the specimen, the stress during the UFT is calculated. The UFT results should be comparable at the test frequency and the specimen geometry obtained by the conventional fatigue tests.

본 논문에서는 초고주기피로영역(VHCF)에 대한 가속시험 방법인 초음파 피로시험을 소개하고 이와 관련된 이론을 검토하였다. 초음파피로시험은 20 kHz 영역에서 시험편의 공진을 이용하므로 동탄성계수와 파장을 고려하여 시험편의 길이와 형상을 설계하여야 한다. 공진시험을 통하여 20 kHz 에 맞는 파장을 구하고 시험편의 길이와 동탄성계수를 계산한다. 이렇게 계산된 시험편의 형상과 시험시 형성되는 변위값을 측정하여 응력을 구한다. 초음파 피로시험결과는 기존의 피로시험법에 따른 결과와 비교되어 주파수 및 시험편 형상의 효과가 검증되어야 한다.

Keywords

References

  1. Marines, I., Bin, X. and Bathis, C., 2003, "An Understanding of Very High Cycle Fatigue Metals," International Journal of Fatigue, Vol. 25, pp. 1101-1107. https://doi.org/10.1016/S0142-1123(03)00147-6
  2. Pyttel , B., Schwerdt, D. and Berger, C., 2011, "Very High Cycle Fatigue - Is There a Fatigue Limit?," International Journal of Fatigue, Vol. 33, pp. 49-58. https://doi.org/10.1016/j.ijfatigue.2010.05.009
  3. Bathias, C., 1999, "There is No Infinite Fatigue Life in Metallic Materials," Fatigue & Fracture of Engineering Materials & Structures, Vol. 22, Issue 7, pp. 559-565. https://doi.org/10.1046/j.1460-2695.1999.00183.x
  4. Sonsino, C.M., 2007, "Course of SN-Curves Especially in the High-Cycle Fatigue Regime with Regard to Component Design and Safety," International Journal of Fatigue, Vol 29, Issue 12, pp.2246-2258. https://doi.org/10.1016/j.ijfatigue.2006.11.015
  5. Bathis, C., 2006, "Piezoelectric Fatigue Testing Machines and Devices," International Journal of Fatigue, Vol. 28, pp. 1438-1445. https://doi.org/10.1016/j.ijfatigue.2005.09.020
  6. "Ultrasonic Fatigue Testing," ASM handbook Mechanical Testing and Evaluation , Vol. 8.
  7. Green, C.H. and Guiu, F., 1976, "The Ultrasonic Stress Distribution in a Specimen with a Circular Gauge Profile," J. Phys. D: Appl. Phys, Vol. 9, No 6,pp. 1063-1069. https://doi.org/10.1088/0022-3727/9/6/019
  8. Bajons, P. and Kromp, W., 1978, "Determination of Magnification and Resonance Length of Samples used in Ultrasonic Fatigue Test," Ultrasonics, Vol. 16, Issue 5, pp. 213-217. https://doi.org/10.1016/0041-624X(78)90019-7
  9. Cho, I.S., Shin, C.S., Kim, J.Y. and Jeon, Y.H., 2012, "Accelerated Ultrasonic Fatigue Testing Applications and Research Trends," Trans. Korean Soc. Mech. Eng. A, Vol. 36, No. 6, pp. 707-712. https://doi.org/10.3795/KSME-A.2012.36.6.707
  10. Dlapka, M., Danninger, H., Gierl, C., Weiss, B., Khatibi G. and Betzwar-Kotas, A., 2011, "Critical Defects in Different Sinter Hardening Grade Steels Tested under Gigacycle Fatigue Loading," Powder Metallurgy Progress, Vol 11, No. 1-2, pp.69-77.
  11. Freitas, M., Reis, L., Anes, V., Montalvao, D., Ribeiro A.M. and Fonte M., 2011, "Design and Assembly of an Ultrasonic Fatigue Testing Machine," Anales de mecanica de la Fractura, Vol. 1, pp.335-340.
  12. Takahashi, K. and Ogawa, T., 2008, "Evaluation of Giga-cycle Fatigue Properties of Austenitic Stainless Steels Using Ultrasonic Fatigue Test," journal of Solid Mechanics and Materials Engineering, Vol. 2, No. 3, pp. 366-372. https://doi.org/10.1299/jmmp.2.366
  13. Furuya, Y., 2008, "Specimen Size Effects on Gigacycle Fatigue Properties of High-strength Steel under Ultrasonic Fatigue Testing," Scripta Materialia, Vol. 58, Issue 11, pp. 1014-1017. https://doi.org/10.1016/j.scriptamat.2008.01.039
  14. Jin, M.Y., 1999, "Measurements of Elastic Moduli of Rock Cores Using Free-Free Resonance Tests," Journal of the Earthquake Engineering Society of Korea, Vol. 4, No. 4, pp. 95-100.
  15. Furuya , Y., Matsuoka, S. and Yamaguchi, K., 2002, "Gigacycle Fatigue Properties for High-strength Lowalloy Steel at 100 Hz, 600 Hz, and 20 kHz," Scripata Materialia, Vol. 46, pp.157-162. https://doi.org/10.1016/S1359-6462(01)01213-1
  16. Furuya, Y., 2010, "Size Effects in Gigacycle Fatigue of High-strength Steel under Ultrasonic Fatigue Testing," Procedia Engineering, Vol. 2, Issue 1, pp.485-490. https://doi.org/10.1016/j.proeng.2010.03.052

Cited by

  1. Dynamic Analysis of Specimen Under Ultrasonic Fatigue Using Finite Element Method vol.38, pp.7, 2014, https://doi.org/10.3795/KSME-A.2014.38.7.711