DOI QR코드

DOI QR Code

Deposition Optimization and Property Characterization of Copper-Oxide Thin Films Prepared by Reactive Sputtering

  • Received : 2013.03.19
  • Accepted : 2013.03.29
  • Published : 2013.03.30

Abstract

Copper-oxide (CuO) thin films were prepared by reactive sputtering of Cu onto Si wafers and characterized using a statistical design of experiments approach. The most significant factor in controlling the electrical resistivity and deposition rate was determined to be the $O_2$ fraction. The deposited CuO thin films were characterized in terms of their physical and chemical properties, using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), X-ray diffraction (XRD), and 4-point resistance measurements. The deposited copper thin films were characterized by XPS and XRD analyses to consist of $Cu^{2+}$. The CuO thin films of highest resistivity exhibited superior rectifying responses with regard to n-type Si wafers, with a current ratio of $3.8{\times}10^3$. These superior responses are believed to be associated with the formation of a charge-depletion region originating from the p-type CuO and n-type Si materials.

Keywords

References

  1. Y. S. Chaudhary, A. Agrawal, R. Shrivastav, V. R. Satsangi, and S. Dass, "A Study on the Photoelectrochemical Properties of Copper Oxide Thin Films", Int. J. of Hydrogen Energy, 29, 131 (2004). https://doi.org/10.1016/S0360-3199(03)00109-5
  2. Q. Bao, C. M. Li, L. Liao, H. Yang, W. Wang, C. Ke, Q. Song, H. Bao, T. Yu, K. P. Loh, and J. Guo, "Electrical Transport and Photovoltaic Effects of Core-Shell CuO/$C_{60}$ Nanowire Heterostructure", Nanotechnology, 20, 065203 (2009). https://doi.org/10.1088/0957-4484/20/6/065203
  3. Y. Ushio, M. Miyayama, and H. Yanagida, "Effects of Interface States on Gas-Sensing Properties of a CuO/ZnO Thin-Film Heterojunction", Sens. Actuators, B 17, 221 (1994). https://doi.org/10.1016/0925-4005(93)00878-3
  4. P. Samarasekara, N. T. R. N. Kumara, and N. U. S. Yapa, J. Phys. : Condens. Matter 18, 2417 (2006). https://doi.org/10.1088/0953-8984/18/8/007
  5. B. S. Kang, S.-E. Ahn, M.-J. Lee, G. Stefanovich, K. H. Kim, W. X. Xianyu, C. B. Lee, Y. Park, I. G. Baek, and B. H. Park, "High-Current-Density CuOx/InZnOx Thin-Film Diodes for Cross-Point Memory Applications", Adv. Mater., 20, 3066 (2008). https://doi.org/10.1002/adma.200702932
  6. M.-J. Lee, S. I. Kim, C. B. Lee, H. Yin, S.-E. Ahn, B. S. Kang, K. H. Kim, J. C. Park, C. J. Kim, I. Song, S. W. Kim, G. Stefanovich, J. H. Lee, S. J. Chung, Y. H. Kim, and Y. Park, "Low-Temperature-Grown Transition Metal Oxide Based Storage Materials and Oxide Transistors for High-Density Non-volatile Memory", Adv. Funct. Mater., 19, 1587 (2009). https://doi.org/10.1002/adfm.200801032
  7. F. Marabelli, G. B. Parraviciny, and F. S. Drioli, "Optical Gap of CuO", Phys. Rev. B, 52, 1433 (1995). https://doi.org/10.1103/PhysRevB.52.1433
  8. J. Ghijsen, L. H. Tjeng, J. V. Elp, H. Eskes, J. Westerink, G. A. Sawatzky, and M. T. Czyzyk, "Electronic Structure of $Cu_2O$ and CuO", Phys. Rev. B, 38, 11322 (1988). https://doi.org/10.1103/PhysRevB.38.11322
  9. B. P. Rai, "$Cu_2O$ Solar Cells. A Review", Sol. Cells, 25, 265 (1988). https://doi.org/10.1016/0379-6787(88)90065-8
  10. J. B. Liang, N. Kishi, T. Soga, T. Jimbo, and M. Ahmed, "Thin Cuprous Oxide Films Prepared by Thermal Oxidation of Copper Foils with Water Vapor", Thin Solid Films, 520, 2679 (2012). https://doi.org/10.1016/j.tsf.2011.11.037
  11. J. Morales, L. Sanchez, S. Bijani, L. Martynez, M. Gabas, and J. R. Ramos-Barrado, "Electrodeposition of $Cu_2O$: An Excellent Method for Obtaining Films of Controlled Morphology and Good Performance in Li-Ion Batteries", Electro. Solid-state Lett., 8, A159 (2005). https://doi.org/10.1149/1.1854126
  12. J. Pinkas, J. C. Huffman, D. V. Baxter, M. H. Chisholm, and K. G. Caulton, "Mechanistic Role of $H_2O$ and the Ligand in the Chemical Vapor Deposition of Cu, $Cu_2O$, CuO, and $Cu_3N$ from Bis(1,1,1,5,5,5-hexafluoropentane-2,4-dionato)copper(II)", Chem. Mater., 7, 1589 (1995). https://doi.org/10.1021/cm00056a028
  13. K. Kawaguchi, R. Kita, M. Nishiyama, and T. Morishita, "Molecular Beam Epitaxy growth of CuO and $Cu_2O$ Films with Controlling the Oxygen Content by the Flux Ratio of Cu/ O", J. Cryst. Growth, 143, 221 (1994). https://doi.org/10.1016/0022-0248(94)90059-0
  14. V. F. Drobny, and D. L. Pulfrey, "Properties of Reactively-Sputtered Copper Oxide Thin Films", Thin Solid Films, 61, 89 (1979). https://doi.org/10.1016/0040-6090(79)90504-2
  15. M. K. Kim and Jinha Hwang, in Preparation.
  16. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, "Room-Temperature Fabrication of Transparent Flexible Thin-Film Transistors Using Amorphous Oxide Semiconductors", Nature, 432, 488 (2004). https://doi.org/10.1038/nature03090
  17. C.-S. Park, "Electrical Characteristics of (BaSr)$TiO_3/RuO_2$ Thin Films", J. Microelectron. Packag. Soc., 11(3), 63 (2004).
  18. I.-S. Park, K.-R. Kim, and J. An, "Resistance Switching Characteristics of Binary $SiO_2$ and $TiO_2$ Films", J. Microelectron. Packag. Soc., 13(2), 15 (2006).
  19. P. Zhou, M. Yin, H. J. Wan, H. B. Lu, T. A. Tang, and Y. Y. Lin, "Role of TaON Interface for CuxO Resistive Switching Memory Based on a Combined Model", Appl. Phys. Lett., 94, 053510 (2009). https://doi.org/10.1063/1.3078824
  20. H. B. Lv, M. Yin, X. F. Fu, Y. L. Song, L. Tang, P. Zhou, T. A. Tang, B. A. Chen, and Y. Y. Lin, "Resistive Memory Switching of CuxO Films for a Nonvolatile Memory Application", IEEE Electron Device Lett., 29, 309 (2008). https://doi.org/10.1109/LED.2008.917109
  21. G. E. P. Box, J. S. Hunter, W. G. Hunter, Statistics for Experimenters: Design, Innovation, and Discovery, 2nd ed., pp. 235-279, A John Wiley & Sons, Inc., Hoboken, New Jersey (2005).

Cited by

  1. SnO/Sn 혼합 타겟으로 스퍼터 증착된 SnO 박막의 열처리 효과 vol.24, pp.2, 2017, https://doi.org/10.6117/kmeps.2017.24.2.043