DOI QR코드

DOI QR Code

The Effect of Precursor Concentration on ZnO Nanorod Grown by Low-temperature Aqueous Solution Method

저온수열합성방법에 의해 성장한 ZnO 나노로드의 전구체 몰농도 변화에 따른 특성 연구

  • Mun, D.H. (School of Applied Chemical Engineering, Chonnam National University) ;
  • Ha, J.S. (School of Applied Chemical Engineering, Chonnam National University)
  • 문대화 (전남대학교 응용화학공학부) ;
  • 하준석 (전남대학교 응용화학공학부)
  • Received : 2013.03.08
  • Accepted : 2013.03.28
  • Published : 2013.03.30

Abstract

In this research, we investigated the effect of mole concentration of precursor on morphological, structural and optical properties of ZnO nanorods. ZnO nanorods were hydrothermally grown on c-plane sapphire substrates in aqueous solution which contains zinc nitrate hexahydrate and hexamethylenetetramine at 90oC in the precursor range of 0.01 M to 0.025 M. With the increase of mole concentration, length and diameter of ZnO nanorods increased. In all the conditions, the growth direction of rods was longitudinally c-axis direction. From the strong emission peak at 380 nm of PL spectra at room temperature, we could confirm that the crystal quality of ZnO nanorods is good to emit radiative recombination spectra.

전구체의 농도가 ZnO 나노로드의 성장에 미치는 영향에 대하여 알아보았다. ZnO 나노로드는 수열합성법에 의하여 c-plane 사파이어 상에서 성장되었으며, 전구체 농도가 0.01M에서 0.025M로 증가할 때의 형태적, 구조적, 광학적 성질의 변화에 대하여 주사전자현미경, X-선 회절분석기, 그리고 Photoluminescence(PL) 분석을 통하여 알아보았다. 전구체의 몰 분율이 증가함에 따라서 나노로드의 두께와 길이가 모두 증가하는 경향을 보였으며, 성장 방향은 모두 c-axis 방향임을 알 수 있었다. PL 측정에서의 380 nm파장의 강한 emission으로부터, 수열합성법에 의하여 성장된 ZnO 나노로드는 결함의 영향이 적고 양호하게 성장되어 있음을 확인할 수 있었다.

Keywords

References

  1. H. Kato, M. Sano, K. Miyamoto and T. Yao, "Growth and characterization of Ga-doped ZnO layers on a-plane sapphire substrates grown by molecular beam epitaxy", J. Crystal Growth, 237-239, 538 (2002). https://doi.org/10.1016/S0022-0248(01)01972-8
  2. D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen and T. Goto, "Optically pumped lasing of ZnO at room temperature", Appl. Phys. Lett., 70(17), 2230 (1997). https://doi.org/10.1063/1.118824
  3. Y. Wu, H. Yan, M. Huang, B. Messer, J. H. Song and P. Yang, "Inorganic semiconductor nanowires: rational growth, assembly, and novel properties", Chem. Eur. J., 8(6), 1260 (2002). https://doi.org/10.1002/1521-3765(20020315)8:6<1260::AID-CHEM1260>3.0.CO;2-Q
  4. K. Keis, E. Magnusson, H. Lindstrom, S.E. Lindquist and A. Hagfeldt, "A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes", Sol. Energy, 73(1), 51 (2002).
  5. X. Jiang, F.L. Wong, M.K. Fung and S.T. Lee, "Aluminumdoped zinc oxide films as transparent conductive electrode for organic light-emitting devices", Appl. Phys. Lett., 83(9), 1875 (2003). https://doi.org/10.1063/1.1605805
  6. P. Mitra, A.P. Chatterjee and H.S. Maiti, "ZnO thin film sensor", Mater. Lett., 35(1-2), 33 (1998). https://doi.org/10.1016/S0167-577X(97)00215-2
  7. W. I. Park and G. C. Yi, "Electroluminescence in n-ZnO Nanorod Arrays Vertically Grown on p-GaN", Adv. Mater., 16(1), 87 (2004). https://doi.org/10.1002/adma.200305729
  8. Y. Li, G.W Meng, L.D Zhang and F. Phillip, "Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties", Appl. Phys. Lett., 76(15), 2011 (2000). https://doi.org/10.1063/1.126238
  9. Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang and D. P. Yu, "Optical properties of the ZnO nanotubes synthesized via vapor phase growth", Appl. Phys. Lett., 83(9), 1689 (2003). https://doi.org/10.1063/1.1605808
  10. Sun T, Qiu J and Liang C, "Controllable Fabrication and Photocatalytic Activity of ZnO Nanobelt Arrays", J. Phys. Chem., C 112(3), 715 (2008). https://doi.org/10.1021/jp075849h
  11. Y. Kashiwaba, T. Abe, S. Onodera, F. Masuoka, A. Nakagawa, H. Endo, I. Niikura and Y. Kashiwaba, "Comparison of non-polar ZnO (11 $\overline{2}$ 0) films deposited on single crystal ZnO (11 $\overline{2}$ 0) and sapphire (01 $\overline{1}$ 2) substrates", J. Crystal Growth, 298, 477 (2007). https://doi.org/10.1016/j.jcrysgro.2006.10.062
  12. J.Y. Kim, Y.-J. Choi and H.-H. Park, "Surface Oxidation Effect During high Temperature Vacuum Annealing on the Electrical Conductivity of ZnO thin Films Deposited by ALD", J. Microelectron. Packag. Soc., 19(2), 73 (2012). https://doi.org/10.6117/kmeps.2012.19.2.073
  13. D.C. Oh, A. Setiawan, J.J. Kim, H. Ko, H. Makino, T Hanada, M.W. Cho and T. Yao, "Characterization of N-doped ZnO layers grown on (0001) $GaN/Al_2O_3$ substrates by molecular beam epitaxy", Curr. Appl. Phys., 4(6), 625 (2001).
  14. M. Kumar, R.M. Mehra, A. Wakahara, M.Ishida and A. Yoshida, "Pulsed laser deposition of epitaxial Al-doped ZnO film on sapphire with GaN buffer layer", Thin Solid Films, 484(1-2), 174 (2005). https://doi.org/10.1016/j.tsf.2005.03.011
  15. K.J. Suh, "Preparation and Properties of ZnMgO Thin Films Prepared by Pulsed Laser Deposition Method", J. Microelec-tron. Packag. Soc., 12(1), 73 (2005). (in Korean).
  16. L. Spanhel, "Colloidal ZnO nanostructures and functional coatings: A survey", J. Sol-Gel Sci. Technol., 39(1), 7 (2006). https://doi.org/10.1007/s10971-006-7302-5
  17. L.F. Xu, Y. Guo, Q. Liao, J.P. Zhang and D.S. Xu, "Singlecrystalline ZnO nanotube arrays on conductive glass substrates by selective disolution of electrodeposited ZnO nanorods", J. Phys. Chem., B, 111(12), 4549 (2007).
  18. D. Andeen, L. Loeffler, N. Padture and F.F. Lange, "Crystal chemistry of epitaxial ZnO on (111) $MgAl_2O_4$ produced by hydrothermal synthesis", J. Crystal Growth, 259(1-2), 103 (2003). https://doi.org/10.1016/S0022-0248(03)01589-6
  19. M.N.R. Ashfold, R.P. Doherty, N.G. Ndifor-Angwafor, D.J. Riley and Y. Sun, "The kinetics of the hydrothermal growth of ZnO nanostructures", Thin Solid Films, 515(24), 8679 (2007). https://doi.org/10.1016/j.tsf.2007.03.122
  20. L. Schmidt-Mende and J. L. MacManus-Driscoll, "ZnO-nanostructures, defects, and devices", Mater. Today, 10(5), 40 (2007).
  21. Z. Gui, X. Wang, J. Liu, S. Yan, Y. Ding, Z, Wang and Y. Hu, "Chemical growth of ZnO nanorod arrays on textured nanoparticle nanoribbons and its second-harmonic generation performance", J. Solid. State Chem., 179(7), 1984 (2006). https://doi.org/10.1016/j.jssc.2006.03.035
  22. A. Sugunan, H.C. Warad, M. Boman and J. Dutta, "Zinc oxide nanowires in chemical bath on seeded substrates: role of hexamine", J. Sol-Gel Sci Technol., 39(1), 49 (2006). https://doi.org/10.1007/s10971-006-6969-y
  23. V. Srikant and R.D. Clarke, "On the optical band gap of zinc oxide", J. Appl. Phys., 83(10), 5447 (1998). https://doi.org/10.1063/1.367375
  24. V. A. Fonoberov, K. A. Alim, A. A. Balandin, F. Xiu, and J. Liu, "Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals", Phys. Rev. B, 73(16), 165317 (2006). https://doi.org/10.1103/PhysRevB.73.165317

Cited by

  1. Barium Titanate Nanoparticles Formed by Chlorine-Free Ambient Condition Sol Process Using Tetrabutylammonium Hydroxide vol.2016, 2016, https://doi.org/10.1155/2016/8205864