DOI QR코드

DOI QR Code

Gauss-Newton Based Emitter Location Method Using Successive TDOA and FDOA Measurements

연속 측정된 TDOA와 FDOA를 이용한 Gauss-Newton 기법 기반의 신호원 위치추정 방법

  • Kim, Yong-Hee (Department of Electrical and Computer Engineering, Pusan National University) ;
  • Kim, Dong-Gyu (Department of Electrical and Computer Engineering, Pusan National University) ;
  • Han, Jin-Woo (Agency for Defense Development) ;
  • Song, Kyu-Ha (Agency for Defense Development) ;
  • Kim, Hyoung-Nam (Department of Electrical and Computer Engineering, Pusan National University)
  • 김용희 (부산대학교 전자전기컴퓨터공학과) ;
  • 김동규 (부산대학교 전자전기컴퓨터공학과) ;
  • 한진우 (국방과학연구소) ;
  • 송규하 (국방과학연구소) ;
  • 김형남 (부산대학교 전자전기컴퓨터공학과)
  • Received : 2013.02.05
  • Published : 2013.07.25

Abstract

In the passive emitter localization using instantaneous TDOA (time difference of arrival) and FDOA (frequency difference of arrival) measurements, the estimation accuracy can be improved by collecting additional measurements. To achieve this goal, it is required to increase the number of the sensors. However, in electronic warfare environment, a large number of sensors cause the loss of military strength due to high probability of intercept. Also, the additional processes should be considered such as the data link and the clock synchronization between the sensors. Hence, in this paper, the passive localization of a stationary emitter is presented by using the successive TDOA and FDOA measurements from two moving sensors. In this case, since an independent pair of sensors is added in the data set at every instant of measurement, each pair of sensors does not share the common reference sensor. Therefore, the QCLS (quadratic correction least squares) methods cannot be applied, in which all pairs of sensor should include the common reference sensor. For this reason, a Gauss-Newton algorithm is adopted to solve the non-linear least square problem. In addition, to show the performance of the proposed method, we compare the RMSE (root mean square error) of the estimates with CRLB (Cramer-Rao lower bound) and derived the CEP (circular error probable) planes to analyze the expected estimation performance on the 2-dimensional space.

순시(instantaneous) TDOA (time difference of arrival)와 FDOA (frequency difference of arrival)를 이용한 위치추정 방법은 추가적인 측정값 획득을 통해 정확도 향상을 도모할 수 있으며, 이를 위해서는 동시에 운용되는 수신단의 수를 증가하여야 한다. 하지만 전자전 환경에서 수신단 수의 증가는 아군의 피탐확률(probability of intercept) 상승으로 인한 전력 손실을 야기할 수 있고, 수신단 간의 데이터 링크 및 시각동기화와 같은 과정에 대한 추가적인 고려가 필요하다. 따라서 본 논문에서는 이격된 2개의 이동 수신단만을 운용하여 연속적으로 다수의 TDOA와 FDOA 정보를 측정하고, 이를 이용하여 고정 신호원의 위치를 추정하는 방법을 제안한다. 이 경우 매 측정 순간마다 독립된 수신단 쌍(pair)이 추가되므로 각 수신단 조합은 서로 다른 기준 수신단을 가지게 된다. 그러므로 모든 수신단 쌍이 동일한 기준 수신단을 공유해야하는 QCLS (quadratic correction least squares) 방법을 적용할 수 없다. 이러한 이유로 본 논문에서는 비선형 LS 최적해를 반복계산을 통해 얻어내는 Gauss-Newton 기법을 적용한다. 또한 모의실험을 통해 획득된 TDOA와 FDOA의 수가 증가함에 따른 위치추정 결과의 RMSE (root mean square error)값과 CRLB (Cramer-Rao lower bound)를 비교하고, CEP (circular error probable) 평면을 도시하여 2차원 공간상에서의 기대 추정 성능을 분석한다.

Keywords

References

  1. D. L. Adamy, EW 101: First Course in Electronic Warfare, Artech House, 2001.
  2. A. E. Spezio, "Electronic Warfare Systems," IEEE Trans. on Microwave Theory and Techniques, vol. 50, no. 3, pp. 633-644, Mar. 2002. https://doi.org/10.1109/22.989948
  3. H. B. LEE, "A Novel Procedure for Assessing the Accuracy of Hyperbolic Multilateration Systems," IEEE Trans. on Aerospace and Electronic Systems, vol. AES-11, no. 1, pp. 2-15, Jan. 1975. https://doi.org/10.1109/TAES.1975.308023
  4. D. J. Torrieri, "Statistical Theory of Passive Location Systems," IEEE Trans. on Aerospace and Electronic Systems, vol. AES-20, no. 2, pp. 183-197, Jan. 1984. https://doi.org/10.1109/TAES.1984.310439
  5. B. Friedlander, "A Passive Localization Algorithm and Its Accuracy Analysis," IEEE Journ. of Ocean Engineering, vol. OE-12, pp. 234-245, Jan. 1987.
  6. J. O. Smith and J. S. Abel, "Closed-form Least Square Source Location Estimation from Range-difference Measurements," IEEE Trans. on Acoustics Speech, and Signal Processing, vol. ASSP-35, no. 12, pp. 1661-1669, Dec. 1987.
  7. P. C. Chestnut, "Emitter Location Accuracy Using TDOA and Differential Doppler," IEEE Trans. on Aerospace and Electronic Systems, vol. AES-18, no. 2, pp. 214-218, Mar. 1982. https://doi.org/10.1109/TAES.1982.309230
  8. K. Becker, "An Efficient Method of Passive Emitter Location," IEEE Trans. on Aerospace and Electronic Systems, vol. 28, no. 4, pp. 1091-1104, Oct. 1992. https://doi.org/10.1109/7.165371
  9. M. L. Fowler, "Air-to-Air Passive Location System," U.S. Patent 5,870,056, Feb. 1999.
  10. K. Becker, "Passive Localization of Frequency-agile Radars from Angle and Frequency Measurements," IEEE Trans. on Aerospace and Electronic Systems, vol. 35, no. 4, pp. 1229-1144, Oct. 1999.
  11. M. L. Fowler, "Analysis of Single-Platdorm Passive Emitter Location with Terrian Data," IEEE Trans. on Aerospace and Electronic Systems, vol. 37, no. 2, pp. 495-507, Apr. 2001. https://doi.org/10.1109/7.937464
  12. K. C. Ho, "An Accurate Algebraic Solution for Moving Source Location Using TDOA and FDOA Measurements," IEEE Trans. on Signal Processing, vol. 52, no. 9, pp. 2453-2463, Sep. 2004. https://doi.org/10.1109/TSP.2004.831921
  13. M. L. Fowler and X. Hu, "Signal Models for TDOA/FDOA Estimation," IEEE Trans. on Aerospace and Electronic Systems, vol. 44, no. 4, pp. 1543-1550, Oct. 2008. https://doi.org/10.1109/TAES.2008.4667729
  14. D. Musicki and W. Koch, "Geolocation Using TDOA and FDOA Measurements," In Proc. of 11th Int. Conf. on Information Fusion, pp. 1-8, 2008.
  15. 김동혁, 송승헌, 박경순, 성태경, "TDOA 추정치를 이용한 가중치 추정방식의 QCLS 측위 방법," 전자공학회 논문지, 제 44권, 4호, pp. 1-7, 2007년 7 월
  16. W. H. Foy, "Position-Location Solution by Taylor-Series Estimation," IEEE Trans. on Aerospace and Electronic Systems, vol. AES-12, no. 2, pp. 187-194, Mar. 1976. https://doi.org/10.1109/TAES.1976.308294
  17. S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice Hall, NJ. 1993.

Cited by

  1. A Sequential Estimation Algorithm for TDOA/FDOA Extraction for VHF Communication Signals vol.51, pp.7, 2014, https://doi.org/10.5573/ieie.2014.51.7.060