DOI QR코드

DOI QR Code

Technology of Flexible Semiconductor/Memory Device

유연 반도체/메모리 소자 기술

  • 안종현 (연세대학교) ;
  • 이혁 ((주)하나마이크론사) ;
  • 좌성훈 (서울과학기술대학교 NID 융합기술대학원)
  • Received : 2013.06.12
  • Accepted : 2013.06.21
  • Published : 2013.06.30

Abstract

Recently flexible electronic devices have attracted a great deal of attention because of new application possibilities including flexible display, flexible memory, flexible solar cell and flexible sensor. In particular, development of flexible memory is essential to complete the flexible integrated systems such as flexible smart phone and wearable computer. Research of flexible memory has primarily focused on organic-based materials. However, organic flexible memory has still several disadvantages, including lower electrical performance and long-term reliability. Therefore, emerging research in flexible electronics seeks to develop flexible and stretchable technologies that offer the high performance of conventional wafer-based devices as well as superior flexibility. Development of flexible memory with inorganic silicon materials is based on the design principle that any material, in sufficiently thin form, is flexible and bendable since the bending strain is directly proportional to thickness. This article reviews progress in recent technologies for flexible memory and flexible electronics with inorganic silicon materials, including transfer printing technology, wavy or serpentine interconnection structure for reducing strain, and wafer thinning technology.

Keywords

References

  1. G. S. Ryu, J. S. Kim, S. H. Jeong and C. K. Song, "A Printed OTFT-backplane for AMOLED Display", Org. Electron., 14(4), 1218 (2013). https://doi.org/10.1016/j.orgel.2013.02.006
  2. S. Lee, S. S. Lee, J. Park, I.-S. Park, Y. Seol, N.-E. Lee and J. Ahn, "Characteristics of Pentancene on High-k Film for Flexible Organic Field Effect Transistor", J. Microelectron. Packag. Soc., 13, 27 (2006).
  3. J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, and P. Drzaic, "Paper-like Electronic Displays: Large-area Rubber- stamped Plastic Sheets of Electronics and Microencapsulated Electrophoretic Inks", Proc. Natl. Acad. Sci. U.S.A., 98(9), 4835 (2001). https://doi.org/10.1073/pnas.091588098
  4. C. Reese and Z. Bao, "Organic Single-Crystal Field-Effect Transistors", Materials Today, 10(3), 20 (2007).
  5. M. G. Kane, et al., "100 MHz CMOS Circuits using Sequential Laterally Solidified Silicion Thin-Film Transistors on Plastic", Tech. Dig.-IEEE Int. Electron Dev. Meet., IEEE, 939 (2005).
  6. C. M. Lieber, "One-Dimensional Nanostructures : Chemistry, Physics & Applications", Sol. St. Commun., 107(11), 607 (1998). https://doi.org/10.1016/S0038-1098(98)00209-9
  7. C. M. Lieber and Z. L. Wang, "Functional Nanowires", MRS Bulletin, 32(2), 99 (2007).
  8. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan, "One Dimensional Nanostructures : Synthesis, Characterization, and Applications", Adv. Mater., 15(5), 353 (2003). https://doi.org/10.1002/adma.200390087
  9. E. Menard, K. J. Lee, D. Y. Khang, R. G. Nuzzo, and J. A. Rogers, "A Printable Form of Silicon for High Performance Thin Film Transistors on Plastic Substrates", Appl. Phys. Lett., 84(26), 5398 (2004). https://doi.org/10.1063/1.1767591
  10. Y. Sun and J. A. Rogers, "Fabricating Semiconductor Nano/ Microwires and Transfer Printing Ordered Arrays of Them onto Plastic Substrates", Nano Lett., 4(10), 1953 (2004). https://doi.org/10.1021/nl048835l
  11. Z. Suo, H. Gleskova and S. Wagner, "Mechanics of Rollable and Foldable Film-on-Foil Electronics", Appl. Phys. Lett., 74(8), 1177 (1999). https://doi.org/10.1063/1.123478
  12. S.-I Park, J.-H. Ahn, S. Wang, Y. G. Huang and J. A. Rogers, "Theoretical and Experimental Studies of Bending of Inorganic Electronic Materials on Plastic Substrates", Adv. Funct. Mater., 18(18), 2673 (2008). https://doi.org/10.1002/adfm.200800306
  13. R. S. Wagner and W. C. Ellis, "Vapor-Liquid-Solid Mechanism of Single Crystal Growth", Appl. Phys. Lett., 4(5), 89 (1964). https://doi.org/10.1063/1.1753975
  14. L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, "Epitaxial Core-Shell and Core-Multishell Nanowire Heterostructures", Nature, 420, 57 (2002). https://doi.org/10.1038/nature01141
  15. N. A. Melosh, A. Boukai, F. Diana, B. Geradot, A. Badolato, P. M. Petroff, and J. R. Heath, "Ultrahigh-density Nanowir Lattics and Circuits", Science, 300, 112 (2003). https://doi.org/10.1126/science.1081940
  16. J.-H. Ahn, H.-S. Kim, K. J. Lee, Z. Zhu, E. Menard, R. G. Nuzzo and J. A. Rogers, "High-Speed Mechanically Flexible Single-Crystal Silicon Thin-Film Transistors on Plastic Substrates", IEEE Electron Device Lett., 27(6), 460 (2006). https://doi.org/10.1109/LED.2006.874764
  17. J.-H. Ahn, H.-S. Kim, K. J. Lee, S. Jeon, S. J. Kang, Y. Sun, R. G. Nuzzo and J. A. Rogers, "Heterogeneous Three-Dimensional Electronics by Use of Printed Semiconductor Nanomaterials", Science, 314, 1754 (2006).
  18. J.-H. Ahn, H.-S. Kim, E. Menard, K. J. Lee, Z. Zhu, D.-H. Kim, R. G. Nuzzo, J. A. Rogers, I. Amlani, V. Kushner, S. G. Thomas and T. Duenas, "Bendable Integrated Circuits on Plastic Substrates by Use of Printed Ribbons of Single-Crystalline Silicon", Appl. Phys. Lett., 90(21), 213501 (2007). https://doi.org/10.1063/1.2742294
  19. Y. Sun, S. Kim, I. Adesisa, and J. A. Rogers, "Bendable GaAs Metal-Semiconductor Field Effect Transistors Formed with Printed GaAs Wire Arrays on Plastic Substrates", Appl. Phys. Lett., 87(8), 083501 (2005). https://doi.org/10.1063/1.2032609
  20. A.J. Baca, M.A. Meitl, H.C. Ko, S. Mack, H.-S. Kim, J. Dong, P.M. Ferreira and J.A. Rogers, "Printable Single-Crystal Silicon Micro/Nanoscale Ribbons, Platelets and Bars Generated from Bulk Wafers", Adv. Func. Mater., 17(16), 3051 (2007). https://doi.org/10.1002/adfm.200601161
  21. M. A. Meitl, Z.-T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo and J. A. Rogers, "Transfer Printing by Kinetic Control of Adhesion to an Elastomeric Stamp", Nat. Mater., 5, 33 (2006). https://doi.org/10.1038/nmat1532
  22. S.-I. Park, et al., "Printed Assemblies of Inorganic Light- Emitting Diodes for Deformable and Semitransparent Displays", Science, 325, 977 (2009). https://doi.org/10.1126/science.1175690
  23. J. Yoon, et al., "Ultrathin Silicon Solar Microcells for Semitransparent, Mechanically Flexible and Microconcentrator Module Designs", Nat. Mater., 7, 907 (2008). https://doi.org/10.1038/nmat2287
  24. J. Yoon, L. Li, A. V. Semichaevsky, J. H. Ryu, H. T. Johnson, R. G. Nuzzo and J. A. Rogers, "Flexible Concentrator Photovoltaics Based on Microscale Silicon Solar Cells Embedded in Luminescent Waveguides", Nature Communications 2, 343 (2011). https://doi.org/10.1038/ncomms1318
  25. B. K. Sharma, et al., "Load-Controlled Roll Transfer of Oxide Transistor for Stretchable Electronics", Adv. Func. Mat., 23(16), 2024 (2013). https://doi.org/10.1002/adfm.201202519
  26. I. Jung, et al., "Dynamically Tunable Hemispherical Electronic Eye Camera System with Adjustable Zoom Capability", Proc. Natl. Acad. Sci. U.S.A., 108(5), 1788 (2011). https://doi.org/10.1073/pnas.1015440108
  27. D.-H. Kim, J.-H, Ahn, W. M. Choi, H.-S. Kim, T.-H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, and J. A. Rogers, "Stretchable and Foldable Silicon Integrated Circuits," Science, 320, 507 (2008). https://doi.org/10.1126/science.1154367
  28. D.-H. Kim, Z. Liu, Y.-S. Kim, Jian Wu, J. Song, H.-S. Kim, Y. Huang, K.-C. Hwang, Y. Zhang, and J. A. Rogers, "Optimized Structural Designs for Stretchable Silicon Integrated Circuits", Small, 5(24), 2841 (2009). https://doi.org/10.1002/smll.200900853
  29. T.H. Lee, K. H, Shin and Y. J. Kim, "Flexible and Embedded Packaging of Thinned Silicon Chip", J. Microelectron. Packag. Soc., 11, 29 (2004).
  30. Y. S. Kim, et al., "Advanced Wafer Thinning Technology and Feasibility Test for 3D Integration", Microelectron. Eng., 107, 65 (2013). https://doi.org/10.1016/j.mee.2012.10.025

Cited by

  1. Variation of Elastic Stiffness of Polydimethylsiloxane (PDMS) Stretchable Substrates for Wearable Packaging Applications vol.21, pp.4, 2014, https://doi.org/10.6117/kmeps.2014.21.4.125
  2. Effects of Temperature and Humidity on Electrical Conductivity of Flexible Printed Electrodes with Static Mechanical Deformations vol.36, pp.7, 2013, https://doi.org/10.7736/kspe.2019.36.7.611
  3. Island-Bridge 구조의 강성도 경사형 신축 전자패키지의 유효 탄성계수 및 변형거동 분석 vol.26, pp.4, 2019, https://doi.org/10.6117/kmeps.2019.26.4.039
  4. PDMS 기반 강성도 경사형 신축 전자패키지의 신축변형-저항 특성 vol.26, pp.4, 2013, https://doi.org/10.6117/kmeps.2019.26.4.047
  5. 강성도 경사형 신축 전자패키지의 탄성특성 및 반복변형 신뢰성 vol.26, pp.4, 2013, https://doi.org/10.6117/kmeps.2019.26.4.055