DOI QR코드

DOI QR Code

Changes of Hematological Constituents in the Mullet, Mugil cephalus Exposed to Chromium

크롬 노출에 따른 숭어, Mugil cephalus의 혈액성분 변화

  • Ahn, Tae-Young (Gyeonggi Province Maritime & Fisheries Research Institute) ;
  • Jeong, Dal Sang (Korea National College of Agriculture and Fisheries) ;
  • Kim, Jun-Hwan (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Kang, Ju-Chan (Department of Aquatic Life Medicine, Pukyong National University)
  • 안태영 (경기도해양수산자원연구소) ;
  • 정달상 (한국농수산대학) ;
  • 김준환 (부경대학교 수산생명의학과) ;
  • 강주찬 (부경대학교 수산생명의학과)
  • Received : 2013.05.06
  • Accepted : 2013.08.07
  • Published : 2013.08.30

Abstract

The study was carried out to investigate the changes of hematological parameters induced by waterborne exposure of chromium (Cr) in the mullet, Mugil cephalus. The mullet was exposed to sub-chronic concentrations of chromium (0, 25, 50, 100, $200{\mu}g/L$ Cr) for 4 weeks. The major hematological findings were significant decreases in the red blood cell (RBC) count and hematocrit value in mullet exposed to ${\geq}50{\mu}g/L$ Cr. Although serum calcium concentration was significantly reduced at ${\geq}50{\mu}g/L$ Cr, magnesium concentration was found to be significantly increased at ${\geq}100{\mu}g/L$ Cr. The serum glucose and total protein concentrations were significantly increased at $200{\mu}g/L$ Cr. However, serum triglyceride concentration did not show any noticeable changes in the range of $25{\sim}200{\mu}g/L$ Cr of chromium compared to control group during the experimental period. A significant increment of GOT (glutamic oxalate transminase) and GPT (glutamic pyruvate transminase) activities was noticed at ${\geq}100{\mu}g/L$ Cr. These results indicate that hematological and serum biochemical changes in the mullet by waterborne exposure to chromium are affected at more than $50{\mu}g/L$ Cr.

크롬은 여러 산업으로 배출되어 수 환경을 오염시키는 주요 중금속 중 하나이며, 특히 Cr(VI)은 수용액 내에서 주로 크롬산 이온으로 존재하며, 생체막을 쉽게 통과하여 산화 스트레스 및 생체 축적을 일으킨다. 따라서 본 연구는 숭어를 대상으로 그들의 혈액성분의 변동에 미치는 크롬의 영향을 검토하였다. RBC count 및 Ht 값은 $50{\mu}g/L$ Cr 농도에서 유의적인 감소를 나타냈으나, Hb 농도의 유의한 변동은 관찰되지 않았다. 혈청 칼슘농도는 $50{\mu}g/L$ Cr의 농도에서 유의적인 감소를 보였고, 마그네슘농도는 $100{\mu}g/L$ Cr의 농도에서 유의적인 증가를 보였다. Glucose 및 total protein 농도는 가장 높은 크롬농도인 $200{\mu}g/L$ Cr에서 유의적인 증가를 보였으나, 중성지방인 triglyceride 농도는 노출기간 동안 유의한 변화가 관찰되지 않았다. GOT 및 GPT 활성은 $100{\mu}g/L$ Cr 이상의 농도에서 유의적인 증가를 보였고, ALP활성은 가장 높은 크롬농도인 $200{\mu}g/L$ Cr에서 유의적인 증가를 보였다. 이상의 결과는 숭어의 혈액성상과 혈청 무기성분은 크롬 농도 $50{\mu}g/L$ 이상, 혈청유기성분과 효소성분은 크롬농도 $100{\mu}g/L$이상에서 변동이 나타나는 것으로 결론 내릴 수 있다.

Keywords

References

  1. Arillo, A. and Melodia, F.: Effects of hexavalent chromium on trout mitochondria. Toxicology Letters. 44: 71-76. 1988. https://doi.org/10.1016/0378-4274(88)90131-2
  2. Arillo, A. and Melodia, F.: Protective effect of fish mucus against Cr(VI) pollution. Chemosphere. 20: 397-402. 1990. https://doi.org/10.1016/0045-6535(90)90070-A
  3. Bagchi D., Stohs S.J., Downs B.W., Preuss H.G.: Cytotoxicity and oxidative mechanisms of different forms of chromium. Toxicology. 180: 5-22. 2002. https://doi.org/10.1016/S0300-483X(02)00378-5
  4. Benifey T.J. and Biron M.: Acute stress response in triploid rainbow trout (Onchrhynchus mykiss) and brook trout (Salvelinus fontinalis). Aquaculture. 184: 167-176. 2000. https://doi.org/10.1016/S0044-8486(99)00314-2
  5. Bhattacharya T., Ray A.K., Bhattacharya S.: Blood glucose and hepatic glycogen. Interrelationship in Channa punctatus(Bloch). A parameter of non-lethal toxicity bioassay with industrial pollutants. Indian J. Exp. Biol. 25: 539-541. 1987.
  6. Chang Y.J., Hur J.W., Lim H.K. and Lee J.K.: Stress in olive flounder (Oaralichthys olivaceus) and fat cod (Hexagrammos otakii) by the sudden drop and rise of water temperature. J. Korean. Fish. Soc., 34: 91-97. 2001.
  7. De Flora, S.: Threshold mechanisms and site specificity in chromium(VI) carcinogenesis. Carcinogenesis. 21: 533-541. 2000. https://doi.org/10.1093/carcin/21.4.533
  8. Giles M.A.: Electrolyte and water balance in plasma and urine of rainbow trout (Salmo gairdneri) during chronic exposure to cadmium. Can. J. Fish. Aquat. Sci., 41: 1678-1686. 1984. https://doi.org/10.1139/f84-206
  9. Haux C., Larsson A.: Long-term sublethal physiological effects on rainbow trout, Salmo gairdneri, during exposure to cadmium and after subsequent recovery. Aquatic Toxicology, 5: 129-142. 1984. https://doi.org/10.1016/0166-445X(84)90004-3
  10. Hontela, A., C. Daniel and A. C. Richard: Effects of acute and subacute exposure to cadmium on the interrenal and thyroid function in rainbow trout (Oncorhynchus mykiss). Aquat. Txicol., 35: 171-182. 1996. https://doi.org/10.1016/0166-445X(96)00012-4
  11. Hur J.W., Chang Y.J., Lim H.K., and Lee B.K.: Stress responses of cultured fishes elicited by water level reduction in rearing tank and fish transference during selection process. J. Korean Fish. Soc., 34: 465-472. 2001.
  12. Kennedy, C.J., R.M. Sweeting, A.P. Farrell, B.A. McKeown.: Acute effects of chlorinated resin exposure on juvenile rainbow trout, Oncorhynchus mykiss. Environ. Toxicol. Chem., 14: 977-982. 1995. https://doi.org/10.1002/etc.5620140608
  13. Kuroshima, R.: Effects of acute exposure to cadmium on the electrolyte balance in plasma of the carp and girella. Nippon Suisan Gakkaishi 58: 1139-1144. 1992. https://doi.org/10.2331/suisan.58.1139
  14. Larsson A., Bengtsson B.E., Haux C.: Disturbed ion balance in flounder, Platichthys flesus exposed to sublethal levels of cadmium. Aquatic Toxicology, 1: 19-35. 1981. https://doi.org/10.1016/0166-445X(81)90004-7
  15. Lie, Oe., R. Waagboe, and K. Sandnes.: Growth and chemical composition of adult Atlantic salmon (Salmo Salar) fed dry and silage-based diets. Aquaculture. 69: 343-353. 1988. https://doi.org/10.1016/0044-8486(88)90341-9
  16. Leroux, M. and Perry, W.F.: Investigation of serum alkaline phosphatase in skeletal and hepatobiliary disease. Clinical Biochemistry. 5: 201-207. 1972. https://doi.org/10.1016/S0009-9120(72)80034-1
  17. Lushchak V.I.: Oxidative stress as a component of transition metal toxicity in fish. In: Sevensson, E.P.(Ed). Aquatic Toxicology Research Focus. Nova Science Publishers Inc, Hauppauge, NY: pp. 1-29. 2008.
  18. Lushchak, O.V., Kubrak, O.I., Nykorak, M.Z., Storey, K.B., Lushchak, V.I.: The effect of potassium dichromate on free radical processes in goldfish: possible protective role of glutathione. Aquat. Toxicol. 87: 108-114. 2008. https://doi.org/10.1016/j.aquatox.2008.01.007
  19. Lushchak, V.I.: Oxidative stress as a component of transition metal toxicity in fish. In: Svensson, E.P. (Ed.), Aquatic Toxicology Research Focus. Nova Science Publishers Inc., Hauppauge, NY, USA: 1-29. 2008.
  20. Nash, C.E. and Z.H. Shehaden.: Review of breeding and propagation techniques for grey mullet, Mugil cephalus. ICLARM Studies and Reviews 3, Int. Cent. Living Aquatic Resources Management, Manila, 87. 1980.
  21. Nath, K. and Kumar, N.: Effects of hexavalent chromium on the carbohydrate metabolism of a freshwater tropical teleost Colisa sciatus. Bull. Inst. 2001. Acad. Sin. (Taipei) 26: 245-248. 1987.
  22. Nemcsok J., Boross L.: Comparative studies on the sensitivity of different fish species to metal pollution. Acta Biol. Hung. 33: 23-27. 1982.
  23. Odum, W.E.: Utilization of the direct grazing and plant detritus food chains by the striped mullet, Mugil cephalus. Marine food chains, 222-240. 1970.
  24. Patierno, S.R., Banh, D., Landolph, J.R.: Transformation of C3H/10T1/2 mouse embryo cells to focus formation and anchorage independence by insoluble lead chromate but not soluble calcium chromate: relationship to mutagenesis and internalization of lead chromate particles. Cancer Res. 48: 5280-5288. 1988.
  25. Prabakaran M., Binuramesh C., Steinhagen D., Michael R.D.: Immune response and disease resistance of Oreochromis mossambicus to Aeromonas hydrophila after exposure to hexavalent chromium. Dis. Aquat. Organ., 68: 189-196. 2006. https://doi.org/10.3354/dao068189
  26. Rogers J.T., Richards J.G., Wood C.M.: Ionoregulatory disruption as the acute toxic mechanism for lead in the rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology 64: 215-234. 2003. https://doi.org/10.1016/S0166-445X(03)00053-5
  27. Thomson, J.M.: Synopsis of biological data on the grey mullet, Mugil cephalus. Fish. Synop. Div. Fish. Oceanogr. C.S.I.R.O. Australia, (1). 1963.
  28. Thomson, J.M.: The grey mullets. Oceanogr. Mar. Biol. Ann. Rev. 4: 301-305. 1968.
  29. Towill L.E.: Reviews of the Environmental Effects of Pollutants: III, Chromium. EPA-600/1-78-023 and ORNL/EIS-80: 12-17. 1978.
  30. Valko, M., Morris, H., Cronin, M.T.: Metals, toxicity and oxidative stress. Curr. Med. Chem. 12: 1161-1208. 2005. https://doi.org/10.2174/0929867053764635
  31. von Burg, R., Liu, D.: Chromium and hexavalent chromium. J. Appl. Toxicol. 13: 225-230. 1993. https://doi.org/10.1002/jat.2550130315
  32. Wang, S., Leonard, S.S., Ye, J., Gao, N., Wang, L., Shi, X.: Role of reactive oxygen species and Cr(VI) in Ras-mediated signal transduction. Mol. Cell. Biochem. 255: 119-127. 2004. https://doi.org/10.1023/B:MCBI.0000007268.42733.53
  33. Waring C.P., Stagg R.M., and Poxton M.G.: Physiological responses to handling in the turbot. J. Fish Biol. 48: 161-173. 1996. https://doi.org/10.1111/j.1095-8649.1996.tb01110.x

Cited by

  1. Combined effects of copper and temperature on Hematological constituents in the Rock fish, Sebastes schlegeli vol.27, pp.1, 2014, https://doi.org/10.7847/jfp.2014.27.1.057
  2. 대왕범바리(Epinephelus fuscoguttatus ♀×E. lanceolatus ♂)의 아질산 급성노출에 따른 내성한계: 혈액성상 및 혈장성분의 변화 vol.38, pp.1, 2020, https://doi.org/10.11626/kjeb.2020.38.1.093