DOI QR코드

DOI QR Code

A study on the mechanical properties of structure rolled steel and stainless steel for the CO2 welding

구조용 압연강재와 스테인리스강재의 CO2 용접에 대한 기계적 특성연구

  • Lim, Jong Young (Department of Mechanical Engineering, Kyungil University) ;
  • Yoon, Myung Jin (Department of Mechanical and Automotive Engineering, Kyungil University) ;
  • Kim, Tae Hyun (Department of Nano Fusion Technology, Pusan National University) ;
  • Kim, Sang Youn (Department of Nano Fusion Technology, Pusan National University) ;
  • Kim, Tae Gyu (Department of Nanoechatronics Engineering, Pusan National University)
  • 임종영 (경일대학교 대학원 기계공학과) ;
  • 윤명진 (경일대학교 기계자동차학부) ;
  • 김태현 (부산대학교 나노융합기술학과) ;
  • 김상윤 (부산대학교 나노융합기술학과) ;
  • 김태규 (부산대학교 나노메카트로닉스공학과)
  • Received : 2013.08.02
  • Accepted : 2013.08.13
  • Published : 2013.08.31

Abstract

It is well known that fatigue failure occur on welded structures in industrial application due to the repetitive load force. In order to decrease the fatigue failure, we analysed the mechanical properties based on their structural aspect, roll steel (SS 400) welded onto stainless steels (STS 304) by $CO_2$ gas as well as structure roll steel welded onto itself. We compared the hardness, tensile and fatigue properties with two kinds of samples which had no defects on the welding part observed by X-ray topographic analysis. It was recognized that the tensile and fatigue strength of SS 400 welded onto itself by $CO_2$ gas was higher than that of SS 400 welded onto STS 304.

산업시설에는 용접된 구조물에 반복 하중이 발생하여 피로파괴가 발생하고 있는데 이 피로파괴를 줄이기 위해 일반구조용압연강재(SS400)와 스테인리스강(STS304)을 $CO_2$ 용접하여 기계적 특성 분석을 하였다. X-ray 촬영을 하여 결함검사를 하고 용접부에 결함이 없는 시험편으로 경도, 인장, 피로 시험을 하였다. 경도는 SS400과 STS304가 용접된 시험편이 SS304만 용접된 시험편보다 높게 나타났다. 그리고 인장강도와 항복강도는 반대로 SS304만 용접된 시험편이 높았으며 피로한도 또한 마찬가지였다. 따라서 $CO_2$ 용접을 할 경우 융점이 낮고 용접성이 좋은 SS400만으로 용접할 때 더 좋은 성능을 보여준다.

Keywords

References

  1. R.-J. Wang and D.-G. Shang, "Fatigue life prediction based on natural frequency changes for spot welds under random loading", J. of Fatigue 31 (2009) 361. https://doi.org/10.1016/j.ijfatigue.2008.08.001
  2. K. Iida and Y. Yazaki, "The bending fatigue strength of welded steel pipe with uniform mismatch", J. of Pressure Vessels and Piping 3 (1975) 211. https://doi.org/10.1016/0308-0161(75)90023-X
  3. H.T. Kang, P. Dong and J.K. Hong, "Fatigue analysis of spot welds using a mesh-insensitive structural stress approach", J. of Fatigue 29 (2007) 1546. https://doi.org/10.1016/j.ijfatigue.2006.10.025
  4. I. Poutiainen and G. Marquis, "A fatigue assessment method based on weld stress", J. of Fatigue 28 (2006) 1037. https://doi.org/10.1016/j.ijfatigue.2005.11.007
  5. J.K. Hong, J.H. Park, N.K. Park, I.S. Eom, M.B. Kim and C.Y. Kang, "Microstructures and mechanical properties of Inconel 718 welds by $CO_2$ laser welding", J. of Materials Processing Technology 201 (2008) 515. https://doi.org/10.1016/j.jmatprotec.2007.11.224
  6. L.W. Tsay, C.L. Hsu and C. Chen, "Notched tensile fracture of Ti-4.5Al-3V-2Fe-2Mo welds at elevated temperatures", J. of Materials Chemistry and Physics 120 (2010) 715. https://doi.org/10.1016/j.matchemphys.2009.12.034
  7. L.W. Tsay and C.Y. Tsay, "The effect of microstructures on the fatigue crack growth in Ti-6Al-4V laser welds", J. of Fatigue 19 (1997) 713. https://doi.org/10.1016/S0142-1123(97)00113-8
  8. ASTM E8, "Standard Test Methods for Tension Testing of Metallic Materials", ASM INTERNATIONAL 8 (1990).
  9. ASTM E466, "Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials", ASMINTERNATIONAL 8 (1990).
  10. D.J. Lee, J.C. Byun, J.H. Sung and H.W. Lee, "The dependence of crack properties on the Cr/Ni equivalent ratio in AISI 304L austenitic stainless steel weld metals", J. of Materials Science and Engineering 513 (2009) 154.

Cited by

  1. A study on the simulation for chatter vibration stability improvement of end milling process vol.26, pp.1, 2016, https://doi.org/10.6111/JKCGCT.2016.26.1.035