DOI QR코드

DOI QR Code

Water Balance Projection Using Climate Change Scenarios in the Korean Peninsula

기후변화 시나리오를 활용한 미래 한반도 물수급 전망

  • Kim, Cho-Rong (Dept. of Civil and Environmental Engineering, Seoul National University) ;
  • Kim, Young-Oh (Dept. of Civil and Environmental Engineering, Seoul National University) ;
  • Seo, Seung Beom (Dept. of Civil, Construction, and Environmental Engineering, North Carolina State University) ;
  • Choi, Su-Woong (Dept. of Civil and Environmental Engineering, Seoul National University)
  • 김초롱 (서울대학교 건설환경공학부) ;
  • 김영오 (서울대학교 건설환경공학부) ;
  • 서승범 (노스캐롤라이나주립대학교 토목건설환경공학부) ;
  • 최수웅 (서울대학교 건설환경공학부)
  • Received : 2012.12.31
  • Accepted : 2013.05.10
  • Published : 2013.08.31

Abstract

This study proposes a new methodology for future water balance projection considering climate change by assigning a weight to each scenario instead of inputting future streamflows based on GCMs into a water balance model directly. K-nearest neighbor algorithm was employed to assign weights and streamflows in non-flood period (October to the following June) was selected as the criterion for assigning weights. GCM-driven precipitation was input to TANK model to simulate future streamflow scenarios and Quantile Mapping was applied to correct bias between GCM hindcast and historical data. Based on these bias-corrected streamflows, different weights were assigned to each streamflow scenarios to calculate water shortage for the projection periods; 2020s (2010~2039), 2050s (2040~2069), and 2080s (2070~2099). As a result by applying the proposed methodology to project water shortage over the Korean Peninsula, average water shortage for 2020s is projected to increase to 10~32% comparing to the basis (1967~2003). In addition, according to getting decreased in streamflows in non-flood period gradually by 2080s, average water shortage for 2080s is projected to increase up to 97% (516.5 million $m^3/yr$) as maximum comparing to the basis. While the existing research on climate change gives radical increase in future water shortage, the results projected by the weighting method shows conservative change. This study has significance in the applicability of water balance projection regarding climate change, keeping the existing framework of national water resources planning and this lessens the confusion for decision-makers in water sectors.

본 연구에서는 기존의 기후변화를 고려한 물수급 분석 방법론의 문제점을 개선하기 위해 GCM 미래 유량 시나리오를 물수급 모형에 직접 입력하는 대신 과거 유량 시나리오의 가중값(재현확률)을 부여하는 새로운 물수급 전망기법을 제안하고자 한다. GCM 미래 기후자료를 TANK 모형에 입력하여 중권역별 미래 유량을 모의하였으며 모의결과에 대한 편이보정을 위해 Quantile Mapping 기법을 적용하였다. 이러한 미래 유량 전망결과를 반영하여 각각의 입력자료에 대한 가중값(재현확률)을 새롭게 산정함으로써 미래 목표 전망구간에 대한 물부족량을 산정하였다. 물수급 모형의 입력자료에 대한 가중값 산정을 위해K-nn 알고리즘을 적용하였으며 비홍수기(10~6월) 유량을 가중값 산정을 위한 기준유량으로 결정하였다. 기후 변화의 불확실성을 고려하고자 4개의 GCM과 3개의 AR4 SRES 온실가스 배출 시나리오를 앙상블 조합하여 생성한 기후변화 시나리오를 활용하였다. 본 연구에서제시한 방법론을 한반도 4대강 유역에 적용한 결과, 기후변화를 고려한 한반도 미래 평균 물부족량은 2020s (2010~2039년)에는 과거에 비해 10~32% 정도 증가할 것으로 전망되었다. 또한, 한반도 4대강 유역의 경우 먼 미래로 갈수록 비홍수기 유량이 점차 감소할 것으로 전망됨에 따라 2080s (2070~2099년)에는 과거 대비 평균 물부족량이 최대 97%(약 516.5백만 $m^3$/년) 증가할 것으로 전망되었다. 기존의 기후변화 연구 방법론의 전망결과를 비교분석한 결과, 기존 방법론은 매우 극적인 물부족량 증가를 전망하고 있는 반면 본 연구에서 제안한 기법은 상대적으로 보수적인 변화를 전망하였다. 본 연구는 물수급 분석시기 후 변화를 고려하되 기존 국가계획 방법론의 틀을 최대한 유지하고 있다는 점에서 국가수자원계획 수립에 있어 정책결정권자들의 혼돈을 줄여줄 수 있는 방법론이 될 수 있다고 판단된다.

Keywords

References

  1. Bae, D.H., Jung, I.W., and Lee, B.J. (2007). "Outlook on Variation of Water Resources in Korea under SRES A2 Scenario." Journal of Korea Water Resources Association, KWRA, Vol. 40, No. 12, pp. 921-930. (In Korean with English abstract) https://doi.org/10.3741/JKWRA.2007.40.12.921
  2. Christensen, N.S., Wood, A.W., Voison, N., Lettenmaier, D.P., and Palmer, R.N. (2004). "The Effect of Climate Change on the Hydrology and Water Resources of the Colorado River Basin." Climatic Change, Vol. 62, pp. 337-363. https://doi.org/10.1023/B:CLIM.0000013684.13621.1f
  3. Fowler, H.J., Kilsby, C.G., and Stunell, J. (2007). "Modeling the Impacts of Projected Futere Climate Change on Water Resources in North-West England." Hydrology & Earth System Sciences, Vol. 11, No. 3, pp. 1115-1126. https://doi.org/10.5194/hess-11-1115-2007
  4. Groves, D.G., Yates, D., and Tebaldi, C. (2008). "Developing and Applying Uncertain Global Climate Change Projections for Regional Water Management Planning." Water Resources Research, Vol. 44, Issue 12, W12413.
  5. Hashino, T., Bradley, A.A., and Schwartz, S. (2007). "Evaluation of Bias-Correction Methods for Ensemble Streamflow Volume Forecasts." Hydrology and Earth System Sciences, Vol. 11, No. 2, pp. 939-950. https://doi.org/10.5194/hess-11-939-2007
  6. Hoff, H., Swartz, C., Yates, D., and Tielborger, K. (2007). "Water Management under Extreme Water Scarcity: Scenario Analysis for the Jordan River Basin, Using WEAP21."Water Saving in Mediterranean Agriculture and Future Research Needs, Vol. 2, pp. 321-331.
  7. Islam, M.D.S., Aramaki, T., and Hanaki, K. (2005). "Development and Application of an Integrated Water Balance Model to Study the Sensitivity of the Tokyo Metropolitan Area Water Availability Scenario to Climate Changes." Water Resources Management, Vol. 19, pp. 423-445. https://doi.org/10.1007/s11269-005-3277-1
  8. Kang, D.H. (2007). An Impact Assessment of Climate Change on Water Resources for the Geum River Basin. Master thesis, Seoul National University, Korea.
  9. KICT(2005). K-WEAP User Guideline. (In Korean)
  10. Kim, S.J., Kim, B.S., Jun, W.D., and Kim, H.S. (2010). "The Evaluation of Climate Change Impacts on the Water Scarcity of the Han River Basin in South Korea Using High Resolution RCM Data." Journal of Korea Water Resources Association, KWRA, Vol. 43, No. 3, pp. 295-308. (In Korean with English abstract) https://doi.org/10.3741/JKWRA.2010.43.3.295
  11. Kirono, D., Podger, G., Franklin, W., and Siebert, R. (2007). Climate Change Impact on ROUS Water Supply." Water : Journal of the Australian Water Association, March 2007, pp. 68-72.
  12. Lall, U., and Sharma, A. (1996). "A Nearest Neighbor Bootstrap for Resampling Hydrologic Time Series." Water Resources Research, Vol. 32, No. 3, pp. 679-693. https://doi.org/10.1029/95WR02966
  13. MLTM(2009). National Water Resources Security Against Climate Change. (In Korean)
  14. MLTM(2011). Water Vision 2020: 2011-2020. (In Korean)
  15. MOCT (2006). Water Vision 2020: 2006-2020. (In Korean).
  16. Purkey, D.R., Joyce, B., Vicuna, S., Hanemann, M.W., Dale, L.L., Yates, D., and Dracup, J.A. (2008). "Robust Analysis of Future Climate Change Impacts on Water for Agriculture and Other Sectors: a Case Study in the Sacramento Valley." Climatic Change, Vol. 87, pp. 109-122. https://doi.org/10.1007/s10584-007-9375-8
  17. Seo, Y.W., Lee, S.H., Kim, Y.O., and Lee, D.R. (2000). "Climate Change Assessment for Reservoir Operations of Dae-Chung Dam." Proceedings 2000 KSCE Annual Conference, Korean Society of Civil Engineering, Vol. 3, pp. 427-430. (In Korean)
  18. Sharif, M., and Burn, D.H. (2006). "Simulating Climate Change Scenarios using an Improved K-Nearest Neighbor Model." Journal of Hydrology, Vol. 325, pp. 179-196. https://doi.org/10.1016/j.jhydrol.2005.10.015
  19. Snover, A.K., Hamlet, A.F., and Lettenmaier, D.P. (2003). "Climate Change Scenarios for Water Planning Studies: Pilot Applications in the Pacific Northwest." BAMS, Vol. 84, Issue 11, pp. 1513-1518. https://doi.org/10.1175/BAMS-84-11-1513
  20. VanRheenen, N.T., Palmer, R.N., and Hahn, M.A. (2003). "Evaluating Potential Climate Change Impacts on Water Resource Systems Operations: Case Studies of Portland, Oregon and the Central Valley, California." Water Resources, Vol. 124, pp. 35-50.
  21. Vicuna, S., Maurer, E.P., Joyce, B., Dracup, J.A., and Purkey, D. (2007). "The Sensitivity of California Water Resources to Climate Change Scenarios." Journal of the American Water Resources Association, Vol. 43, No. 2, pp. 482-498. https://doi.org/10.1111/j.1752-1688.2007.00038.x
  22. Wiley, M.W. (2004). Analysis Techniques to Incorporate Climate Change Information into Seattle's Long Range Water Supply Planning. Dissertation, University of Washington.
  23. Yates, D. (2003). "A Technique for Generating Regional Climate Scenarios using a Nearest-Neighbor Algorithm." Water Resources Research, Vol. 39, No. 7, 1199.

Cited by

  1. Projection of Future Water Supply Sustainability in Agricultural Reservoirs under RCP Climate Change Scenarios vol.56, pp.4, 2014, https://doi.org/10.5389/KSAE.2014.56.4.059
  2. Groundwater Level Trend Analysis for Long-term Prediction Basedon Gaussian Process Regression vol.21, pp.4, 2016, https://doi.org/10.7857/JSGE.2016.21.4.030
  3. Assessing the Performance of CMIP5 GCMs for Various Climatic Elements and Indicators over the Southeast US vol.47, pp.11, 2014, https://doi.org/10.3741/JKWRA.2014.47.11.1039
  4. Uncertainty of Hydro-meteorological Predictions Due to Climate Change in the Republic of Korea vol.47, pp.3, 2014, https://doi.org/10.3741/JKWRA.2014.47.3.257
  5. Projection of Climate Change with Uncertainties: 1. GCM and RCP Uncertainties vol.14, pp.5, 2014, https://doi.org/10.9798/KOSHAM.2014.14.5.317
  6. Evaluation of Agro-Climatic Index Using Multi-Model Ensemble Downscaled Climate Prediction of CMIP5 vol.17, pp.2, 2015, https://doi.org/10.5532/KJAFM.2015.17.2.108
  7. Analysis of Future Meteorological Drought Index Considering Climate Change in Han-River Basin vol.18, pp.4, 2016, https://doi.org/10.17663/JWR.2016.18.4.432