DOI QR코드

DOI QR Code

Current Status and Development of Modeling Techniques for Forecasting and Monitoring of Air Quality over East Asia

동아시아 대기질 예보 및 감시를 위한 모델링 기술의 현황과 발전 방향

  • Park, Rae Seol (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Han, Kyung Man (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Song, Chul Han (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Park, Mi Eun (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Lee, So Jin (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Hong, Song You (Department of Atmospheric Sciences, Yonsei University) ;
  • Kim, Jhoon (Department of Atmospheric Sciences, Yonsei University) ;
  • Woo, Jung-Hun (Department of Advanced Technology Fusion, Konkuk University)
  • 박래설 (광주과학기술원 환경공학부) ;
  • 한경만 (광주과학기술원 환경공학부) ;
  • 송철한 (광주과학기술원 환경공학부) ;
  • 박미은 (광주과학기술원 환경공학부) ;
  • 이소진 (광주과학기술원 환경공학부) ;
  • 홍성유 (연세대학교 대기과학과) ;
  • 김준 (연세대학교 대기과학과) ;
  • 우정헌 (건국대학교 신기술융합학과)
  • Received : 2013.06.15
  • Accepted : 2013.07.25
  • Published : 2013.08.31

Abstract

Current status and future direction of air quality modeling for monitoring and forecasting air quality in East Asia were discussed in this paper. An integrated air quality modeling system, combining (1) emission processing and modeling, (2) meteorological model simulation, (3) chemistry-transport model (CTM) simulation, (4) ground-based and satellite-retrieved observations, and (5) data assimilation, was introduced. Also, the strategies for future development of the integrated air quality modeling system in East Asia was discussed in this paper. In particular, it was emphasized that the successful use and development of the air quality modeling system should depend on the active applications of the data sets from incumbent and upcoming LEO/GEO (Low Earth Orbit/Geostationary Earth Orbit) satellites. This is particularly true, since Korea government successfully launched Geostationary Ocean Color Imager (GOCI) in June, 2010 and has another plan to launch Geostationary Environmental Monitoring Spectrometer (GEMS) in 2018, in order to monitor the air quality and emissions in/around the Korean peninsula as well as over East Asia.

Keywords

References

  1. Adhikary, B., S. Kulkarni, A. Dallura, Y. Tang, T. Chai, L.R. Leung, Y. Qian, C.E. Chung, V. Ramanathan, and G.R. Carmichael (2008) A regional scale chemical transport modeling of Asian aerosols with data assimilation of AOD observations using optimal interpolation technique, Atmos. Environ., 42(37), 8600-8615. https://doi.org/10.1016/j.atmosenv.2008.08.031
  2. Baklanov, A., A. Mahura, and R. Sokhi (2010) Integrated Systems of Meso-Meteorological and Chemical Transport Models, Eds., Springer, Berlin, Heidelberg, Germany, ISBN 978-3-642-13979-6, 186 pp.
  3. Bei, N., B. de Foy, W. Lei, M. Zavala, and L.T. Molina (2008) Using 3DVAR data assimilation system to improve ozone simulations in the Mexico City basin, Atmos. Chem. Phys., 8, 7353-7366. https://doi.org/10.5194/acp-8-7353-2008
  4. Boersma, K.F., D.J. Jacob, E.J. Bucsela, A.E. Perring, R. Dirksen, R.J. van der A, R.M. Yantosca, R.J. Park, M.O. Wenig, T.H. Bertram, and R.C. Cohen (2008) Validation of OMI tropospheric $NO_{2}$ observations during INTEX-B and application to constrain $NO_{x}$ emissions over the eastern United States and Mexico, Atmos. Environ., 42, 4480-4497. https://doi.org/10.1016/j.atmosenv.2008.02.004
  5. Boersma, K.F., H.J. Eskes, J.P. Veefkind, E.J. Brinksma, R.J. van der A, M. Sneep, G.H.J. van den Oord, P.F. Levelt, P. Stammes, J.F. Gleason, and E.J. Bucsela (2007) Near-real time retrieval of tropospheric $NO_{2}$ from OMI, Atmos. Chem. Phys., 2013-2128, sref: 1680-7324/acp/2007-7-2103.
  6. Boersma, K.F., H.J. Eskes, and E.J. Brinksma (2004) Error analysis for tropospheric $NO_{2}$ retrieval from space, Journal of Geophysical Research, 109, D04311, doi: 10.1029/2003JD003962.
  7. Bougeault, P. and P. Lacarrere (1989) Parameterization of orography-induced turbulence in a mesobeta-scale model, Mon. Wea. Rev., 117, 1872-1890. https://doi.org/10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2
  8. Brankov, E., R.F. Henry, K.L. Civerolo, W. Hao, S.T. Rao, P.K. Misra, R. Bloxam, and N. Reid (2003) Assessing the effects of transboundary ozone pollution between Ontario, Canada and New York, USA, Environ. Pollut., 123, 403-411. https://doi.org/10.1016/S0269-7491(03)00017-4
  9. Braun, S.A. and W.-K. Tao (2000) Sensitivity of high-resolution simulations of hurricane Bob (1991) to planetary boundary layer parameterizations, Mon. Wea. Rev., 128, 3941-3961. https://doi.org/10.1175/1520-0493(2000)129<3941:SOHRSO>2.0.CO;2
  10. Brown, S.S., T.B. Ryerson, A.G. Wollny, A.C. Brock, R. Pletier, A.P. Sullivan, R.J. Weber, W.P. Bube, M. Trainer, J.E. Meagher, F.C. Fehsenfeld, and A.R. Ravishankara (2006) Variablility in nocturnal nitrogen oxide processing and its role in regional air quality, Science, 311, 67, DOI: 10.1126/science.1120120.
  11. Butler, T.M., D. Taraborrelli, C. Bruhl, H. Fischer, H. Harder, M. Martinez, J. Williams, M.G. Lawrence, and J. Lelieveld (2008) Improved simulation of isoprene oxidation chemistry with the ECHAM5/MESSy chemistry- climate model: lessons from the GABRIEL airborne field campaign, Atmos. Chem. Phys., 8, 4529-4546, doi:10.5194/acp-8-4529-2008.
  12. Chameides, W.L., R.W. Lindsay, J. Richardson, and C.S. Kiang (1988) The role of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case study, Science 241, 1473-1475. https://doi.org/10.1126/science.3420404
  13. Chung, C.E., V. Ramanathan, G. Carmichael, S. Kulkarni, S. Tang, B. Adhikary, L.R. Leung, and Y. Qian (2010) Anthropogenic aerosol radiative forcing in Asia derived from regional models with atmospheric and aerosol data assimilation, Atmos. Chem. Phys., 10, 6007-6024, www.atmos-chem-phys.net/10/6007/2010/. https://doi.org/10.5194/acp-10-6007-2010
  14. Clayton, A.M., A.C. Lorenc, and D.M. Barker (2012) Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office, Q.J.R. Meteorol. Soc., doi: 10.1002/qj.2054.
  15. Colette, A., C. Granier, O. Hodnebrog, H. Jakobs, A. Maurizi, A. Nyiri, S. Rao, M. Amann, B. Bessagnet, A. D'Angiola, M. Gauss, C. Heyes, Z. Klimont, F. Meleux, M. Memmesheimer, A. Mieville, L. Rouil, F. Russo, S. Schucht, D. Simpson, F. Stordal, F. Tampieri, and M. Vrac (2012) Future air quality in Europe: a multi-model assessment of projected exposure to ozone, Atmos. Chem. Phys., 12, 10613-10630, doi:10.5194/acp-12-10613-2012.
  16. Collins, W.D., P.J. Rasch, B.E. Eaton, B.V. Khattatov, and J.-F. Lamarque (2001) Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX, J. Geophys. Res., 106, 7313-7336. https://doi.org/10.1029/2000JD900507
  17. Davis, J.M., P.V. Bhave, and K.M. Foley (2008) Parameterization of $N_{2}O_{5}$ reaction probabilities on the surface of particles containing ammonium, sulfate, and nitrate, Atmos. Chem. Phys., 8, 5295-5311. https://doi.org/10.5194/acp-8-5295-2008
  18. De Smedt, I., J.-F. Muller, T. Stavrakou, R. van der A, H. Eskes, and M. Van Roozendael (2008) Twelve years of global observations of formaldehyde in the troposphere using GOME and SCIAMACHY sensors, Atmos. Chem. Phys., 8, 4947-4963. https://doi.org/10.5194/acp-8-4947-2008
  19. Elshorbany, Y.F., B. Steil, C. Bruhl, and J. Lelieveld (2012) Impact of HONO on global atmospheric chemistry calculated with an empirical parameterization in the EMAC model, Atmos. Chem. Phys., 12, 9977-10000. doi:10.5194/acp-12-9977-2012.
  20. Eskes, H.J. and K.F. Boersma (2003) Averaging kernels for DOAS total-column satellite retrievals, Atmos. Chem. Phys., 3, 1285-1291. https://doi.org/10.5194/acp-3-1285-2003
  21. Evans, M.J. and D.J. Jacob (2005) Impact of new laboratory studies of $N_{2}O_{5}$ hydrolysis on global model budget of tropospheric nitrogen oxides, ozone, and OH, Journal of Geophys. Res., VOL. 32, L09813, doi: 10.1029/2005GL022469.
  22. Fu, T., D. Jacob, P. Palmer, K. Chance, Y.X. Wang, B. Barletta, B. Blake, J.C. Stanton, and M.J. Pilling (2007) Space-based formaldehyde measurements as constraints on volatile organic compound emissions in east and south Asia and implications for ozone, Journal of Geophysical Research, 112, D06312, doi:10.1029/2006JD007853.
  23. Galmarini, S., I. Kioutsioukis, and E. Solazzo (2013) E pluribus unum: ensemble air quality predictions, Atmos. Chem. Phys. Discuss., 13, 581-631. doi:10.5194/acpd- 13-581-2013.
  24. Goncalves, M., D. Dabdub, W.L. Chang, O. Jorba, and J.M. Baldasano (2012) Impact of HONO sources on the performance of mesoscale air quality models, Atmos. Environ., 54, 168-176. https://doi.org/10.1016/j.atmosenv.2012.02.079
  25. Grell, G.A., S.E. Peckham, R. Schmitz, S.A. McKeen, G. Frost, W.C. Skamarock, and B. Eder (2005) Fully coupled on-line chemistry within the WRF model, Atmos. Environ., 39, 6957-6975. https://doi.org/10.1016/j.atmosenv.2005.04.027
  26. Grell, G.A., S. Emeis, W.R. Stockwell, T. Schoenemeyer, R. Forkel, J. Michalakes, R. Knoche, and W. Seidl (2000) Application of a multiscale, coupled MM5/ chemistry model to the complex terrain of the VOTALP valley campaign, Atmos. Env., 34, 1435-1453. https://doi.org/10.1016/S1352-2310(99)00402-1
  27. Guenther, A., T. Karl, P. Harley, C. Wiedinmyer, P.I. Palmer, and C. Geron (2006) Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmospheric Chemistry and Physics, 6, 3181-3210. https://doi.org/10.5194/acp-6-3181-2006
  28. Han, K.M., C.H. Song, H.J. Ahn, R.S. Park, J.H. Woo, C.K. Lee, A. Richter, J.P. Burrows, J.Y. Kim, and J.H. Hong (2009) Investigation of $NO_{x}$ emissions and $NO_{x}$-related chemistry in East Asia using CMAQpredicted and GOME-derived $NO_{2}$ columns, Atmos. Chem. Phys., 9, 1017-1036. https://doi.org/10.5194/acp-9-1017-2009
  29. Han, K.M., C.K. Lee, J. Lee, J. Kim, and C.H. Song (2011) A comparison study between model-predicted and OMI-retrieved tropospheric $NO_{2}$ columns over the Korean peninsula, Atmos. Environ., 45, 2962-2971. https://doi.org/10.1016/j.atmosenv.2010.10.016
  30. Henze, D.K., J.H. Seinfeld, and D.T. Shindell (2009) Inverse modeling and mapping US air quality influences of inorganic PM2.5 precursor emissions using the adjoint of GEOS-Chem, Atmos. Chem. Phys., 9, 5877-5903, doi:10.5194/acp-9-5877-2009.
  31. Hill, C., C. Deluca, Balaji, M. Suarez, and A.D. Sivia (2004) The architecture of the Earth system modeling framework, Comput. Sci. Eng., 18-28.
  32. Holloway, T., A. Fiore, and M.G. Hastings (2003) Intercontinental transport of air pollution: will emerging science lead to a new hemispheric treaty?, Environ. Sci. Technol., 37, 4535-4542. https://doi.org/10.1021/es034031g
  33. Holloway, T., H. Levy II, and G.R. Carmichael (2002) Transfer of reactive nitrogen in Asia: development and evaluation of a source-receptor model, Atmos. Environ., 36, 4251-4264. https://doi.org/10.1016/S1352-2310(02)00316-3
  34. Holtslag, A.A.M. and B.A. Boville (1993) Local versus nonlocal boundary-layer diffusion in a global climate model, J. Climate, 10, 1825-1842.
  35. Hong, S.-Y. (2010) A new stable boundary-layer mixing scheme and its impact on the simulated East Asia summer monsoon, Quart. J. Roy. Meteor. Soc., 136, 1481-1496. https://doi.org/10.1002/qj.665
  36. Hong, S.-Y., H. Park, H.-B. Cheong, J.-E. Kim, M.-S. Koo, J. Jang, S. Ham, S.-O. Hwang, B.-K. Park, E.-C. Chang, and H. Li (2013) The Global/Regional Integrated Model system (GRIMs), Asia-Pacific J. Atmos. Sci., 49, 219-243. DOI:10.1007/s13143-013-0022-1.
  37. Hong, S.-Y., Y. Noh, and J. Dudhia (2006) A new vertical diffusion package with an explicit treatment of entrainment processes, Mon. Wea. Rev., 134, 2318-2341. https://doi.org/10.1175/MWR3199.1
  38. Hong, S.-Y. and H.-L. Pan (1996) Nonlocal boundary layer vertical diffusion in a Medium-Range Forecast model, Mon. Wea. Rev., 124, 2322-2339. https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2
  39. Hortal, M. and A.J. Simmons (1991) Use of reduced Gaussian grids in spectral models, Mon. Wea. Rev., 119, 1057-1074. https://doi.org/10.1175/1520-0493(1991)119<1057:UORGGI>2.0.CO;2
  40. Jaegle, L., L. Steinberger, R.V. Martin, and K. Chance (2005) Global partitioning of $NO_{x}$ sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions, Faraday Discuss., 130, 407-423, doi:10.1039/b502128f.
  41. Janji'c, Z.A. (1990) The step-mountain coordinate: Physics package. Mon. Wea. Rev., 118, 1429-1443. https://doi.org/10.1175/1520-0493(1990)118<1429:TSMCPP>2.0.CO;2
  42. KEI (2006) Air Quality Modeling System I: Development of Emissions Preparation System with the CAPSS.
  43. Kim, J.Y., C.H. Song, Y.S. Ghim, J.G. Won, S.-C. Yoon, G.R. Carmichael, and J.H. Woo (2006) An investigation on $NH_{3}$ emissions and particulate $NH^{+}_{4}$ and $NO^{-}_{3}$ formation in East Asia, Atmos. Environ., 40(12), 2139-2150. https://doi.org/10.1016/j.atmosenv.2005.11.048
  44. King, M.D., Y.J. Kaufman, D. Tanre, and T. Nakajima (1999) Remote sensing of tropospheric aerosols from space: Past, present, and future, Bull. Am. Meteorol. Soc., 80, 2229-2259. https://doi.org/10.1175/1520-0477(1999)080<2229:RSOTAF>2.0.CO;2
  45. Kinne, S., U. Lohmann, J. Feichter, M. Schulz, C. Timmreck, S. Ghan, R. Easter, M. Chin, P. Ginoux, T. Takemura, I. Tegen, D. Koch, M. Herzog, J. Penner, G. Pitari, B. Holben, T. Eck, A. Smirnov, O. Dubovik, I. Slutsker, D. Tanre, O. Torres, M. Mishchenko, I. Geogdzhayev, D.A. Chu, and Y. Kaufman (2003) Monthly averages of aerosol properties: A global comparison among models, satellite data, and AERONET ground data, J. Geophys. Res., 108, 4634, doi:10.1029/2001JD001253.
  46. Kokhanovsky, A.A., W. von Hoyningen-Huene, and J.P. Burrow (2006) Atmospheric aerosol load from space, Atmos. Res., 81, 176-185. https://doi.org/10.1016/j.atmosres.2005.12.001
  47. Kukkonen, J., T. Olsson, D.M. Schultz, A. Baklanov, T. Klein, A.I. Miranda, A. Monteiro, M. Hirt, V. Tarvainen, M. Boy, V.-H. Peuch, A. Poupkou, I. Kioutsioukis, S. Finardi, M. Sofiev, R. Sokhi, K.E.J. Lehtinen, K. Karatzas, R. San Jose, M. Astitha, G. Kallos, M. Schaap, E. Reimer, H. Jakobs, and K. Eben (2012) A review of operational, regional-scale, chemical weather forecasting models in Europe, Atmos. Chem. Phys., 12, 1-87, doi:10.5194/acp-12-1-2012.
  48. Kunhikrishnan, T., M.G. Lawrence, R. von Kuhlmann, A. Richter, A. Ladstatter-Weissnmayer, and J.P. Burrows (2004) Analysis of tropospheric $NO_{x}$ over Asia using the model of atmospheric transport and chemistry (MATCH-MPIC) and GOME-satellite observations, Atmos. Environ., 38, 581-596. https://doi.org/10.1016/j.atmosenv.2003.09.074
  49. Lee, C., R. Martin, A. van Donkelaar, G. O'Byrne, N. Krotkov, A. Richter, L. Gregory Huey, and J.S. Holloway (2009) Retrieval of vertical columns of sulfur dioxide from SCIAMACHY and OMI: Air mass factor algorithm development, validation, and error analysis, Journal of Geophysical Research, 114, D22303, doi:10.1029/2009JD012123.
  50. Lee, J., J. Kim, C.H. Song, J. Ryu, Y. Ahn, and C.K. Song (2010) Algorithm for retrieval of aerosol optical properties over the ocean from the Geostationary Ocean Color Imager, Remote Sens. Environ., 114, 1077-1088. https://doi.org/10.1016/j.rse.2009.12.021
  51. Leitao, J., A. Richter, M. Vrekoussis, A. Kokhanovsky, Q.J. Zhang, M. Beekmann, and J.P. Burrows (2010) On the improvement of $NO_{2}$ satellite retrievals-aerosol impact on the airmass factors, Atmos. Meas. Tech., 3, 475-493. https://doi.org/10.5194/amt-3-475-2010
  52. Lelieveld, J., T.M. Butler, J.N. Crowley, T.J. Dillon, H. Fischer, L. Ganzeveld, H. Harder, M.G. Lawrence, M. Martinez, D. Taraborrelli, and J. Williams (2008) Atmospheric oxidation capacity sustained by a tropical forest, Nature, 452, 737-740. https://doi.org/10.1038/nature06870
  53. Leue, C., M. Wenig, T. Wagner, O. Klimm, U. Platt, and B. Jahne (2001) Quantitative analysis of $NO_{x}$ emissions from global Ozone Monitoring Experiment satellite mage sequences, J. Geophys. Res., 106(D6), 5493-5505. https://doi.org/10.1029/2000JD900572
  54. Li, X. and Z. Pu (2008) Sensitivity of numerical simulation of early rapid intensification of hurricane Emily (2005) to cloud microphysical and planetary boundary layer parameterizations, Mon. Wea. Rev., 136, 4819-4838. https://doi.org/10.1175/2008MWR2366.1
  55. Lin, J.T., M.B. McElroy, and K.F. Boersma (2010) Constraint of anthropogenic $NO_{x}$ emissions in China from different sectors: a new methodology using multiple satellite retrievals, Atmos. Chem. Phys., 10, 63-78. https://doi.org/10.5194/acp-10-63-2010
  56. Liu, X., P.K. Bhartia, K. Chance, R.J.D. Spurr, and T.P. Kurosu (2010) Ozone profile retrievals from the Ozone Monitoring Instrument, Atmos. Chem. Phys., 10, 2521-2537, doi:10.5194/acp-10-2521-2010.
  57. Liu, X., K. Chance, C.E. Sioris, R.J.D. Spurr, T.P. Kurosu, and R.V. Martin (2005) Ozone profile and tropospheric ozone retrievals from the Global Ozone Monitoring Experiment: Algorithm description and validation, Journal of Geophysical Research, 110, D20307, doi:10.1029/2005JD006240.
  58. Ma, J., A. Richter, J.P. Burrow, H. Nuss and J.A. van Aardenne (2006) Comparison of simulated tropospheric $NO_{2}$ over China with GOME satellite data, Atmos. Environ., 40, 593-604, 2006.
  59. Martin, R.V., D.J. Jacob, K. Chance, T.P. Kurosu, P.I. Palmer, and M.J. Evans (2003) Global inventory of nitrogen oxide emissions constrained by space-based observation of $NO_{2}$ columns, J. Geophys. Res., 108(D17), 4537, doi:10.1029/2003JD003453.
  60. Ohara, T., H. Akimoto, J. Kurokawa, N. Horii, K. Yamaji, X. Yan, and T. Hayasaka (2007) An Asian emission inventory of anthropogenic emission sources for the period 1980-2020, Atmospheric Chemistry and Physics, 7, 4419-4444. https://doi.org/10.5194/acp-7-4419-2007
  61. Park, M.E., C.H. Song, R.S. Park, J. Lee, J. Kim, S. Lee, J.H. Woo, G.R. Carmichael, T.F. Eck, B.N. Holben, S.S. Lee, C.K. Song, and Y.D. Hong (2013) New approach to monitor transboundary particulate pollution over northeast Asia, Atmos. Chem. Phys. Discuss., 13, 15867-15905. https://doi.org/10.5194/acpd-13-15867-2013
  62. Park, R.S., C.H. Song, K.M. Han, M.E. Park, S.-S. Lee, S.-B. Kim, and A. Shimizu (2011) A study on aerosol opti- cal properties over East Asia using a combination of CMAQ-simulated aerosol optical properties and remote-sensing data via a data assimilation technique, Atmos. Chem. Phys., 11, 12275-12296, doi:10-5194/ acp-11-12275-2011. https://doi.org/10.5194/acp-11-12275-2011
  63. Pleim, J., J. Young, D. Wong, R. Gilliam, T. Otte, and R. Mathur (2008) Two-Way Coupled Meteorology and Air Quality Modeling, Air Pollution Modeling and Its Application XIX, C. Borrego and A.I. Miranda (Eds.), 496-504, ISBN 978-1-4020-8452-2, Springer, The Netherlands.
  64. Pleim, J.E. (2007) A combined local and nonlocal closure model for the atmospheric boundary layer. Part II: Application and evaluation in a mesoscale meteorological model, J. Appl. Meteor. Climatol., 46, 1396-1409. https://doi.org/10.1175/JAM2534.1
  65. Poschl, U. (2005) Atmospheric aerosols: Composition, transformation, climate and health effects, Angew. Chem. Int. Ed., 44, 7520-7540. https://doi.org/10.1002/anie.200501122
  66. Pope, C.A. and D.W. Dockery (2006) Health Effects of Fine Particulate Air Pollution: Lines that Connect, Journal of the Air & Waste Management Association, 56(6), 709-742. https://doi.org/10.1080/10473289.2006.10464485
  67. Poulos, G.S., W. Blumen, D.C. Fritts, J.K. Lundquist, J. Sun, S.P. Burns, C. Nappo, R. Banta, R. Newsom, J. Cuxart, E. Terradellas, B. Balsley, and M. Jensen (2002) CASES-99: A comprehensive investigation of the stable nocturnal boundary layer, Bull. Amer. Meteor. Soc., 83, 555-581. https://doi.org/10.1175/1520-0477(2002)083<0555:CACIOT>2.3.CO;2
  68. Richter, A., J.P. Burrows, H. Nuss, C. Granier, and U. Niemeier (2005) Increase in tropospheric nitrogen dioxide over China observed from space, Nature, 437, 129-132, doi:10.1038/nature04092.
  69. Riemer, N., H. Vogel, and B. Vogel (2003) Impact of the heterogeneous hydrolysis of $N_{2}O_{5}$ on chemistry and nitrate aerosol formation in the lower troposphere under photosmog conditions, Journal of Geophys. Res., 108(D4), 4144, doi:10.1029/2002JD002436.
  70. Robinson, A., N.M. Donahue, M.K. Shrivastava, E.A. Weitkamp, A.M. Sage, A.P. Grieshop, T.E. Lane, J.R. Pierce, and S.N. Pandis (2007) Rethinking organic aerosols: Semivolatile emissions and photochemical aging, Science, 315, 1259-1261. https://doi.org/10.1126/science.1133061
  71. Sandu, A., D.N. Daescu, G.R. Carmichael, and F.T. Chai (2004) Adjoint sensitivity analysis of regional air quality models, J. COMPUT. PHYS., doi:10.1016/j.jcp. 2004.10.011.
  72. Schnell, R.C., S.J. Oltmans, R.R. Neely, M.S. Endres, J.V. Molenar, and A.B. White (2009) Rapid phtochemical production of ozone at high concentrations in rural site during winter, Nature Geoscience, 120-122.
  73. Shin, H., S.-Y. Hong, and J. Dudhia (2012) Impacts of the lowest model level height on the performance of planetary boundary-layer parameterizations, Mon. Wea. Rev., 140, 664-682. https://doi.org/10.1175/MWR-D-11-00027.1
  74. Shin, H. and S.-Y. Hong (2011) Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99, Bound.-Layer Meteor., 139, 261-281. https://doi.org/10.1007/s10546-010-9583-z
  75. Singh, H.B. and D.J. Jacob (2000) Future Directions: Satellite observations of tropospheric chemistry, Atmos. Environ., 34, 4399-4401. https://doi.org/10.1016/S1352-2310(00)00271-5
  76. Song, C.H., C.M. Kim, Y.J. Lee, G.R. Carmichael, B.K. Lee, and D.S. Lee (2007) An evaluation of reaction probabilities of sulfate and nitrate precursors onto East Asian dust particles, J. Geophy. Res., 112, D18206, doi:10.1029/2006JD00809.
  77. Song, C.H., J.E. Nam, K.M. Han, M.K. Lee, J.H. Woo, and J.S. Han (2012) Influence of mineral dust mixingstate and reaction probabilities on size-resolved sulfate formation in Northeast Asia, Atmos. Environ., doi:10.1016/ j.atmosenv.2011.10.057.
  78. Song, C.H., M. Maxwell-Meier, R.J. Weber, V. Kapustin, and A. Clarke (2005) Dust composition and mixing state inferred from airborne composition measurements during ACE-Asia C130 Flight#6, Atmos. Environ., 39, 359-369. https://doi.org/10.1016/j.atmosenv.2004.08.046
  79. Song, C.H., M.E. Park, K.H. Lee, H.J. Ahn, Y. Lee, J.Y. Kim, K.M. Han, J. Kim, Y.S. Ghim, and Y.J. Kim (2008) An investigation into seasonal and regional aerosol characteristics in East Asia using model-predicted and remotely-sensed aerosol, Atmos. Chem. & Phys., 8, 6627-6654. https://doi.org/10.5194/acp-8-6627-2008
  80. Steeneveld, G.J., T. Mauritsen, E.I.F. de Bruijn, J.V.-G. de Arellano, G. Svensson, and A.A.M. Holtslag (2008) Evaluation of limited-area models for the representation of the diurnal cycle and contrasting nights in CASES-99. J. Appl. Meteor. Climatol., 47, 869-887. https://doi.org/10.1175/2007JAMC1702.1
  81. Streets, D.G., T.C. Bond, G.R. Carmichael, S.D. Fernandes, Q. Fu, D. He, Z. Klimont, S.M. Nelson, N.Y. Tsai, M.Q. Wang, J.-H. Woo, and K.F. Yarber (2003) An inventory of gaseous and primary aerosol emissions in Asia in the year 2000, Journal of Geophysical Research, 108(D21).
  82. Su, H., Y. Cheng, R. Oswald, T. Behrendt, I. Treb, F.X. Meixner, M.O. Andreae, P. Cheng, Y. Zhang, and U. Poschl (2011) Soil nitrite as a source of atmospheric HONO and OH radicals, Science, 333, 1616-1618. https://doi.org/10.1126/science.1207687
  83. Sukoriansky, S., B. Galperin, and V. Perov (2005) Application of a new spectral theory of stable stratified turbulence to the atmospheric boundary layer over sea ice, Bound.-Layer Meteor., 117, 231-257. https://doi.org/10.1007/s10546-004-6848-4
  84. Uno, I., Y. He, T. Ohara, K. Yamaji, J.-I. Kurokawa, M. Katayama, Z. Wang, K. Noguchi, S. Hayashida, A. Richter, and J.P. Burrows (2007) Systematic analysis of interannual and seasonal variations of model-simulated tropospheric $NO_{2}$ in Asia and comparison with GOME-satellite data, Atmos. Chem. Phys., 7, 1671-1681. https://doi.org/10.5194/acp-7-1671-2007
  85. van der A, R.J., D.H.M.U. Peters, H.J. Eskes, K.F. Boersma, M. Van Roozendael, I. De Smedt, and H.M. Kelder (2006) Detection of the trend and seasonal variation in tropospheric $NO_{2}$ over China, J. Geophys. Res., 111, D12317, doi:10.1029/2005JD006594.
  86. van Noije, T.P.C., H.J. Eskes, F.J. Dentener, D.S. Stevenson, K. Ellingsen, M.G. Schultz, O. Wild, M. Amann, C.S. Atherton, D.J. Bergmann, I. Bey, K.F. Boersma, T. Butler, J. Cofala, J. Drevet, A.M. Fiore, M. Gauss, D.A. Hauglustaine, L.W. Horowitz, I.S.A. Isaksen, M.C. Krol, J.-F. Lamarque, M.G. Lawrence, R.V. Martin, V. Montanaro, J.-F. Muller, G. Pitari, M.J. Prather, J.A. Pyle, A. Richter, J.M. Rodriguez, N.H. Savage, S.E. Strahan, K. Sudo, S. Szopa, and M. van Roozendael (2006) Multi-model ensemble simulations of tropospheric $NO_{2}$ compared with GOME retrievals for the year 2000, Atmos. Chem. Phys., 6, 2943-2979, doi:10.5194/acp-6-2943-2006.
  87. Volkamer, R., J.L. Jimenez., F. San Martini, K. Dzepina, Q. Zhang, D. Salcedo, L.T. Molina, D.R. Worsnop, and M.J. Molina (2006) Secondary organic aerosol formation from anthropogenic air pollution: Rapid and higher than expected, Geophys. Res. Lett., 33, doi:10.1029/2006GL026899.
  88. Wang, H., D.J. Jacob, P. Le Sager, D.G. Streets, R.J. Park, A.B. Gilliland, and A. van Donkelaa (2009) Surface ozone background in the United States: Canadian and Mexican pollution influences, Atmos. Environ., 43, 1310-1319. https://doi.org/10.1016/j.atmosenv.2008.11.036
  89. Wang, Y.X., M.B. McElroy, R.V. Martin, D.G. Streets, Q. Zhang, and T.M. Fu (2007) Seasonal variability of $NO_{x}$ emissions over east China constrained by satellite observations: Implications for combustion and microbial sources, J. Geophys. Res., 112, D06301, doi:10.1029/2006jd007538.
  90. Wittrock, F., A. Richter, H. Octjen, J.P. Burrows, M. Kanakidou, S. Myriokefalitakis, R. Volkamer, S. Beirle, U. Platt, and T. Wagner (2006) Simultaneous global observations of glyoxal and formaldehyde from space, Geophy. Res. Lett., 33, L16804, doi:10.1029/2006GL 026310.
  91. Woo, J.-H., K.-C. Choi, H.K. Kim, B.H. Baek, M. Jang, J.-H. Eum, C.H. Song, Y.-I. Ma, Y. Sunwoo, L.-S. Chang, and S.H. Yoo (2012) Development of an anthropogenic emissions processing system for Asia using SMOKE, Atmospheric Environment, 58, 5-13. https://doi.org/10.1016/j.atmosenv.2011.10.042
  92. Yu, H., R.E. Dickinson, M. Chin, Y.J. Kaufman, B.N. Holben, I.V. Geogdzhayev, and M.I. Mishchenko (2003) Annual cycle of global distributions of aerosol optical depth from integration of MODIS retrievals and GOCART model simulations, J. Geophys. Res., 108(D3), 4128, doi:10.1029/2002JD002717.
  93. Zhang, Q., D.G. Streets, G.R. Carmichael, K.B. He, H. Huo, A. Kannari, Z. Klimont, I.S. Park, S. Reddy, J.S. Fu, D. Chen, L. Duan, Y. Lei, L.T. Wang, and Z.L. Yao (2009) Asian emissions in 2006 for the NASA INTEX-B mission, Atmospheric Chemistry and Physics, 9, 5131-5153. https://doi.org/10.5194/acp-9-5131-2009
  94. Zhang, Q., D.G. Streets, K. He, Y. Wang, A. Richter, J.P. Burrows, I. Uno, C.J. Jang, D. Chen, Z. Yao, and Y. Lei (2007) $NO_{x}$ emission trends for China, 1995-2004: The view from the ground and the view from space, J. Geophys. Res., 112, D22306, doi:10.1029/2007 JD008684.
  95. Zhang, Q., J.L. Jimenez, M.R. Canagaratna, J.D. Allan, H. Coe, I. Ulbrich, M.R. Alfarra, A. Takami, A.M. Middlebrook, Y.L. Sun, K. Dzepina, E. Dunlea, K. Docherty, P.F. DeCarlo, D. Salcedo, T. Onasch, J.T. Jayne, T. Miyoshi, A. Shimono, S. Hatakeyama, N. Takegawa, Y. Kondo, J. Schneider, F. Drewnick, S. Borrmann, S. Weimer, K. Demerjian, P. Williams, K. Bower, R. Bahreini, L. Cottrell, R.J. Griffin, J. Rautiainen, J.Y. Sun, Y.M. Zhang, and D.R. Worsnop (2007b) Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenicallyinfluenced Northern Hemisphere mid-latitudes, Geophys. Res. Lett., 34, L13801, doi:10.1029/2007GL 029979.