DOI QR코드

DOI QR Code

Research Trends of Receptor Models in Korea and Foreign Countries and Improvement Directions for Air Quality Management

수용모델의 국내외 연구동향과 대기질 관리를 위한 발전방향

  • Hwang, InJo (Department of Environmental Engineering, Daegu University) ;
  • Kim, Dong-Sool (Department of Environmental Science and Engineering, Kyung Hee University)
  • 황인조 (대구대학교 환경공학과) ;
  • 김동술 (경희대학교 환경학 및 환경공학과)
  • Received : 2013.06.03
  • Accepted : 2013.07.25
  • Published : 2013.08.31

Abstract

Receptor models have been rapidly developed to manage the ambient air quality and to establish effective emission reduction strategies. The models are used to identify various emission sources and apportion quantitatively the ambient pollutant mass based on various measured physico-chemical properties of the air pollutants at the receptor site. Many types of receptor models have been applied to estimate source contributions since those provide fundamental information when establishing reasonable environmental policies in Korea and Foreign countries. In this paper, we will introduce the basic concept and principal of the receptor model, various types of existing models with discussing strong and weak points for each model, and performance procedure of PMF model as the most popular model in the world. Further the trends of receptor modeling studies in Korea and other countries were provided. Finally, the improvement directions of the modeling works for the national and local air quality management were suggested in this paper.

Keywords

References

  1. Anttila, P., P. Paatero, U. Tapper, and O. Jarvinen (1995) Source identification of bulk wet deposition in Finland by positive matrix factorization, Atmos. Environ., 29(14), 1705-1718. https://doi.org/10.1016/1352-2310(94)00367-T
  2. Blifford, I.H. and G.O. Meeker (1967) A factor analysis model large scale pollution, Atmos. Environ., 1, 147-157. https://doi.org/10.1016/0004-6981(67)90042-X
  3. Bong, C.K., J.S. Yun, I.J. Hwang, C.R. Kim, and D.S. Kim (2003) Estimation of quantitative source contribution of VOCs in Seoul area, J. Korean Society of Atmospheric Environment, 19(4), 387-396. (in Korean with English abstract)
  4. Choi, H.W., I.J. Hwang, S.D. Kim, and D.S. Kim (2004) Determination of source contribution based on aerosol number and mass concentration in the Seoul subway stations, Journal of Korean Society for Atmospheric Environment, 20(1), 17-31. (in Korean with English abstract)
  5. Christensen, E.R. and S. Arora (2007) Source apportionment of PAHs in sediments using factor analysis by time records: Application to Lake Michigan, USA, Atmos. Environ., 41, 168-176.
  6. Chueinta, W., P.K. Hopke, and P. Paatero (2000) Investigation of sources of atmospheric aerosol at urban and suburban residential area in Thailand by positive matrix factorization, Atmos. Environ., 34(20), 3319-3329. https://doi.org/10.1016/S1352-2310(99)00433-1
  7. Cooper, J.A. and J.G. Watson (1980) Receptor oriented methods of air particulate source apportionment, JAPCA, 30(10), 1116-1125.
  8. Draxler, R.R. and G.D. Hess (1997) Description of the HYSPLIT 4 modeling system, NOAA Technical Memorandum ERL ARL-224, NOAA Air Resources Laboratory, Silver Spring, MD.
  9. Friedlander, S.K. (1973) Chemical element balances and identification of air pollution sources, Environ. Sci. & Technol., 7(3), 235-240. https://doi.org/10.1021/es60075a005
  10. Giorio, C., A. Tapparo, M. Dall'Osto, R.M. Harrison, D.C.S. Beddows, C.D. Marco, and E. Nemitz (2012) Comparison of three techniques for analysis of data from an Aerosol Time-of-Flight Mass Spectrometer, Atmos. Environ., 61, 316-326. https://doi.org/10.1016/j.atmosenv.2012.07.054
  11. Gordon, G.E. (1988) Receptor models, Environ. Sci. & Technol., 22(10), 1132-1142. https://doi.org/10.1021/es00175a002
  12. Han, J.S., K.J. Moon, B.J. Kong, S.Y. Ryu, and Y.J. Kim (2004) Size-segregated sources of aerosol estimated by factor analysis - For the measurement using Drum impactor at Gosan, Jeju Island in May 2002, Journal of Korean Society for Atmospheric Environment, 20(5), 685-695. (in Korean with English abstract)
  13. Henry, R.C. (1997) History and fundamentals of multivariate air quality receptor models, Chemom. Intell. Lab. Syst., 37(1), 37-42. https://doi.org/10.1016/S0169-7439(96)00048-2
  14. Henry, R.C., Y.-S. Chang, and C.H. Spiegelman (2002) Location nearby sources of air pollution by nonparametric regression of atmospheric concentrations on wind direction, Atmos. Environ., 36, 2237-2244. https://doi.org/10.1016/S1352-2310(02)00164-4
  15. Heo, J.S. and D.S. Kim (1993) Prediction of high level ozone concentration in Seoul by using multivariate statistical analyses, Journal of Korea Air Pollution Research Association, 9(3), 207-215. (in Korean with English abstract).
  16. Heo, J.S. and D.S. Kim (2004a) A new method of ozone forecasting using fuzzy expert and neural network systems, Science of Total Environment, 325, 221-237. https://doi.org/10.1016/j.scitotenv.2003.11.009
  17. Heo, J.S., K.H. Kim, and D.S. Kim (2004b) Pattern recognition of high O3 episodes in forecasting daily maximum ozone levels, Terr. Atmos. and Oceanic Sciences, 15(2), 199-220. https://doi.org/10.3319/TAO.2004.15.2.199(A)
  18. Hidy, G.M. and S.K. Friedlander (1972) The nature of the Los Angeles aerosol, Proceedings of the 2nd International Clean Air Congress, Academic Press, New York, 391-404.
  19. Hien, P.D., N.T. Binh, Y. Truong, and N.T. Ngo (1999) Temporal variations of source impacts at the receptor, as derived from air particulate monitoring data in Ho Chi Minh City, Vietnam, Atmos. Environ., 33(19), 3133-3142. https://doi.org/10.1016/S1352-2310(98)00337-9
  20. Hopke, P.K. (2000) A guide to Positive Matrix Factorization, in Workshop on UNMIX and PMF as applied to PM2.5. Edited by R.D. Willis, RTP, NC, EPA 600/ A-00/048.
  21. Hopke, P.K. (2003) Recent developments in receptor modeling, J. of Chemometrics, 17, 255-265. https://doi.org/10.1002/cem.796
  22. Hopke, P.K., D.J. Alpert, and B.A. Roscore (1982) FANTASIA program for target transformation factor analysis to apportion source in environmental samples, Computer & Chemistry, 7(3), 149-155.
  23. Hwang, I.J. (2009) Estimation of source apportionment for semi-continuous PM2.5 and identification of location for local point sources at the St. Louis supersite, USA, Journal of Korean Society for Atmospheric Environment, 25(2), 154-166. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2009.25.2.154
  24. Hwang, I.J. (2010) Source identification ana estimation of source apportionment of ambient PM2.5 at western national park site in USA, Journal of Korean Society for Atmospheric Environment, 26(1), 21-33. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2010.26.1.021
  25. Hwang, I.J. and D.S. Kim (1998) Studies on the chemical compositions and distributions of ambient submicron aerosols, Journal of Korea Air Pollution Research Association, 14(1), 11-23. (in Korean with English abstract)
  26. Hwang, I.J. and D.S. Kim (2003a) Source identification of ambient PM10 using the PMF model, Journal of Korean Society for Atmospheric Environment, 19(6), 701-717. (in Korean with English abstract)
  27. Hwang, I.J. and D.S. Kim (2003b) Estimation of quantitative source contribution of ambient PM10 using the PMF model, Journal of Korean Society for Atmospheric Environment, 19(6), 719-731. (in Korean with English abstract)
  28. Hwang, I.J. and P.K. Hopke (2006) Comparison of source apportionments of fine particulate matter at two San Jose STN sites, J. Air & Waste Manage. Assoc., 56, 1287-1300. https://doi.org/10.1080/10473289.2006.10464586
  29. Hwang, I.J. and P.K. Hopke (2007) Estimation of source apportionment and potential source locations of PM2.5 at a west coastal IMPROVE site, Atmos. Environ., 41, 506-518. https://doi.org/10.1016/j.atmosenv.2006.08.043
  30. Hwang, I.J., D.S. Kim, and P.K. Hopke (2008a) Estimation of source apportionment of ambient PM2.5 at western coastal IMPROVE site in USA, Journal of Korean Society for Atmospheric Environment, 24(1), 30-42. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2008.24.1.030
  31. Hwang, I.J., P.K. Hopke, and J.P. Pinto (2008b) Source apportionment and spatial distributions of coarse particles during the Regional Air Pollution Study, Environ. Sci. & Technol., 42, 3524-3530. https://doi.org/10.1021/es0716204
  32. Hwang, I.J., T.O. Kim, and D.S. Kim (2001) Source identification of PM-10 in Suwon using the method of positive matrix factorization, Journal of Korean Society for Atmospheric Environment, 17(2), 133-145. (in Korean with English abstract)
  33. Hwang, I.J., Y.H. Cho, W.G. Choi, H.M. Lee, and T.O. Kim (2008c) Quantitative estimation of PM10 source contribution in Gumi city by the positive matrix factorization model, Journal of Korean Society for Atmospheric Environment, 24(1), 100-107. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2008.24.1.100
  34. Jeon, J.M., D. Hur, and D.S. Kim (2005a) Development of source profiles and estimation of source contribution for VOCs by the chemical mass balance model in the Yeosu Petrochemical Industrial Complex, J. Korean Society of Atmospheric Environment, 21(1), 83-96. (in Korean with English abstract)
  35. Jeon, J.M., D. Hur, I.J. Hwang, and D.S. Kim (2005b) Development of the VOC source profile using collinearity test in the Yeosu Petrochemical Complex, J. Korean Society of Atmospheric Environment, 21(3), 315-327. (in Korean with English abstract)
  36. Kang, B.W., H.S. Lee, and H.K. Kim (2000) Source identification of fine particle (PM2.5) in Chongju using a chemical mass balance model, Journal of Korean Society for Atmospheric Environment, 16(5), 477-485. (in Korean with English abstract)
  37. Kim, D.S. and H.S. Kim (1990) The air quality analysis in underground shopping centers using pattern recognition, Journal of Korea Air Pollution Research Association, 6(1), 1-10. (in Korean with English abstract)
  38. Kim, D.S. and I.J. Hwang (2002) The origination mechanism of PM10 and methodology of identification for PM10 sources, Air Cleaning Technology, 15(1), 38-53.
  39. Kim, D.S. and P.K. Hopke (1988a) The classification of individual particles based on computer controlled scanning electron microscopy data, Aerosol Sci. and Tech., 9, 133-151. https://doi.org/10.1080/02786828808959201
  40. Kim, D.S. and P.K. Hopke (1988b) Source apportionment of the El Paso aerosol by particle class balance analysis, Aerosol Sci. and Tech., 9, 221-235. https://doi.org/10.1080/02786828808959210
  41. Kim, D.S. and T.J. Lee (1993) Quantitative source estimation of particulate matters in Suwon area using the target transformation factor analysis based on size segregation scheme, Journal of Korea Air Pollution Research Association, 9(1), 44-50. (in Korean with English abstract)
  42. Kim, D.S., H.K. Kim, S.D. Kim, and T.O. Kim (1990a) A study on the distribution of fall-out particles using a receptor model, Journal of Korean Society of Environmental Engineering, 12(1), 1-9. (in Korean with English abstract)
  43. Kim, D.S., S.D. Kim, Y.S. Kim, E.B. Shin, and T.J. Lee (1994) Quantitative determination of aerosol contribution in Seoul metropolitan subway stations, J. Korean Society of Environmental Engineering, 16(3), 309-319. (in Korean with English abstract)
  44. Kim, E. and P.K. Hopke (2004) Comparison between Conditional Probability Function and Nonparametric Regression for Fine Particle Source Directions, Atmos. Environ., 38, 4667-4673. https://doi.org/10.1016/j.atmosenv.2004.05.035
  45. Kim, E., P.K. Hopke, and E.S. Edgerton (2003) Source identification of Atlanta aerosol by positive matrix factorization, J. Air & Waste Manage. Assoc., 53, 731-739. https://doi.org/10.1080/10473289.2003.10466209
  46. Kim, G.Y. and M.S. Jeon (1996) SAS Factor Analysis, Freedom academy, p. 35.
  47. Kim, K.S., I.J. Hwang, and D.S. Kim (2001) Development of a receptor methodology for quantitative assessment of ambient PM10 sources in Suwon area, Journal of Korean Society for Atmospheric Environment, 17(2), 119-131. (in Korean with English abstract)
  48. Kim, T.O., D.S. Kim, and J.G. Na (1990b) Quantitative source estimation of particulate matters in Pusan area using target transformation factor analysis, Journal of Korea Air Pollution Research Association, 6(2), 135-146. (in Korean with English abstract)
  49. Korean Society for Atmospheric Environment (KOSAE) (2009) A study on arrangement of improvement and complement counterplan for basic plan of metropolitan air quality management, Ministry of Environment.
  50. Lee, E., C.K. Chan, and P. Paatero (1999) Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong, Atmos. Environ., 33(19), 3201-3212. https://doi.org/10.1016/S1352-2310(99)00113-2
  51. Lee, H.S., C.M. Kang, B.W. Kang, and S.K. Lee (2005) A study on the PM2.5 source characteristics affecting the Seoul area using a chemical mass balance receptor model, Journal of Korean Society for Atmospheric Environment, 21(3), 329-341. (in Korean with English abstract)
  52. Lee, T.J. and D.S. Kim (1997) Estimation of source contribution for ambient particulate matters in Suwon area, Journal of Korea Air Pollution Research Association, 13(4), 285-296. (in Korean with English abstract)
  53. Lee, T.J., J.B. Hur, S.J. Yi, S.D. Kim, and D.S. Kim (2009) Estimation of PM10 source contributions on three cities in the Metropolitan area by using PMF model, J. Korean Society of Atmospheric Environment, 25(4), 275-288. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2009.25.4.275
  54. Leuchner, M. and B. Rappengluck (2010) VOC source-receptor relationships in Houston during TexAQS-II, Atmos. Environ., 44(33), 4056-4067. https://doi.org/10.1016/j.atmosenv.2009.02.029
  55. Liu, W., P.K. Hopke, Y.J. Han, S.M. Yi, T.M. Holsen, S. Cybart, K. Kimberly, and M. Milligan (2003) Application of receptor modeling to atmospheric constituents at Potsdam and Stockton, NY, Atmos. Environ., 37(36), 4997-5007. https://doi.org/10.1016/j.atmosenv.2003.08.036
  56. Malm, W.C. and J.L. Hand (2007) An Examination of the physical and optical properties of aerosols collected in the IMPROVE program, Atmos. Environ., 41, 3407-3427. https://doi.org/10.1016/j.atmosenv.2006.12.012
  57. Malm, W.C., J.F. Sisler, D. Huffman, R.A. Eldred, and T.A. Cahill (1994) Spatial and seasonal trends in particle concentration and optical extinction in the United States, Journal of Geophysical Research, 99(D1), 1347-1370. https://doi.org/10.1029/93JD02916
  58. Miller, M.S., S.K. Friedlander, and G.M. Hidy (1972) A chemical element balance for the Pasadena aerosol, J. Colloid and Inter. Inter. Science, 39(1), 165-176. https://doi.org/10.1016/0021-9797(72)90152-X
  59. Moon, K.J., J.S. Han, B.J. Kong, I.R. Jung, S.S. Cliff, T.A. Cahill, and K.D. Perry (2006) Size-resolved source apportionment of ambient particles by positive matrix factorization at Gosan, Jeju Island during ACE-Asia, Journal of Korean Society for Atmospheric Environment, 22(5), 590-603. (in Korean with English abstract)
  60. Nam, B.H., I.J. Hwang, and D.S. Kim (2002) Pattern classification of PM-10 in the indoor environment using disjoint principal component analysis, Journal of Korean Society for Atmospheric Environment, 18(1), 25-37. (in Korean with English abstract)
  61. Ng, N.L., M.R. Canagaratna, J.L. Jimenez, Q. Zhang, I.M. Ulbrich, and D.R. Worsnop (2011) Real-time methods for estimating organic component mass concentrations from aerosol mass spectrometer data, Environ. Sci. & Technol., 45, 910-916. https://doi.org/10.1021/es102951k
  62. Oh, M.S., T.J. Lee, and D.S. Kim (2011) Quantitative source apportionment of size-segregated particulate matter at urbanized local site in Korea, Aerosol and Air Quality Research, 11, 247-264.
  63. Paatero, P. (1997) Least squares formulation of robust nonnegative factor analysis, Chemom. Intell. Lab. Syst., 37, 23-35. https://doi.org/10.1016/S0169-7439(96)00044-5
  64. Paatero, P. and P.K. Hopke (2003) Discarding or downweighting high-noise variables in factor analytic models, Analytica Chimica Acta, 490, 277-289. https://doi.org/10.1016/S0003-2670(02)01643-4
  65. Paatero, P. and U. Tapper (1994) Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values, Environmetrics, 5, 111-126. https://doi.org/10.1002/env.3170050203
  66. Paatero, P., P.K. Hopke, B.A. Begum, and S.K. Biswas (2005) A Graphical Diagnostic Method for Assessing the Rotation in Factor Analytical Models of Atmospheric Pollution, Atmos. Environ., 39, 193-201. https://doi.org/10.1016/j.atmosenv.2004.08.018
  67. Polissar, A.V., P.K. Hopke, and R.D. Poirot (2001) Atmospheric aerosol over Vermont: Chemical composition and sources, Environ. Sci. & Technol., 35(23), 4604-4621. https://doi.org/10.1021/es0105865
  68. Polissar, A.V., P.K. Hopke, P. Paatero, W.C. Malm, and J.F. Sisler (1998) Atmospheric aerosol over Alaska, 2. Elemental composition and sources, J. of Geophysical Research, 103(D15), 19045-19057. https://doi.org/10.1029/98JD01212
  69. Polissar, A.V., P.K. Hopke, P. Paatero, Y.J. Kaufmann, D.K. Hall, B.A. Bodhaine, E.G. Dutton, and J.M. Harris (1999) The aerosol at Barrow, Alaska: long-term trends and source locations, Atmos. Environ., 33, 2441-2458. https://doi.org/10.1016/S1352-2310(98)00423-3
  70. Prinz, B. and H. Stratmann (1968) The possible use of factor analysis in investigating air quality, Staub-Reinhalt 23, p. 33.
  71. Qin, Y., K. Oduyemi, and L.Y. Chan (2002) Comparative testing of PMF and CFA models, Chemom. Intell. Lab. Syst., 61, 75-87. https://doi.org/10.1016/S0169-7439(01)00175-7
  72. Ramadan, Z., X.H. Song, and P.K. Hopke (2000) Identification of sources of Phoenix aerosol by positive matrix factorization, Air & Waste Manage. Assoc., 50(8), 1308-1320. https://doi.org/10.1080/10473289.2000.10464173
  73. Seoul National University (2005) A study on establishment of risk management plan for monitoring of environmental pollution disease, Ministry of Environment.
  74. Severin, K.G., B.A. Roscore, and P.K. Hopke (1983) The use of factor analysis in source determination of particle emissions, Particulate Science and Technology, 1, 183-192. https://doi.org/10.1080/02726358308906364
  75. Shin, S.A., J.S. Han, and S.D. Kim (2006) Source apportionment and the origin of Asian dust observed in Korea by receptor modeling (CMB), Journal of Korean Society for Atmospheric Environment, 22(2), 157-166. (in Korean with English abstract)
  76. Sun, Y., Z. Wang, H. Dong, T. Yang, J. Li, X. Pan, P. Chen, and J.T. Jayne (2012) Characterization of summer organic and inorganic aerosols in Beijing, China with an Aerosol Chemical Speciation Monitor, Atmos. Environ., 51, 250-259. https://doi.org/10.1016/j.atmosenv.2012.01.013
  77. Ulbrich, I.M., M.R. Canagaratna, Q. Zhang, D.R. Worsnop, and J.L. Jimenez (2009) Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data, Atmos. Chem. Phys., 9, 2891-2918. https://doi.org/10.5194/acp-9-2891-2009
  78. Watson, J.G. (1979) Chemical element balance receptor model methodology for assessing the source of fine and total particulate matter in Portland, Oregon, Ph.D. Oregon graduate center, Beaverton, OR.
  79. Watson, J.G. (1984) Overview of receptor model principles, JAPCA, 34, 619-623.
  80. Watson, J.G. and J.C. Chow (2004) Receptor models for air quality management, The Magazine for Environmental Managers, October 2004, 15-24.
  81. Watson, J.G., L.W.A. Chen, J.C. Chow, and P. Doraiswamy (2008) Source apportionment: Findings from the U.S. supersites program, J. Air & Waste Manage. Assoc., 58, 265-288. https://doi.org/10.3155/1047-3289.58.2.265
  82. Watson, J.G., N.F. Robinsin, E.M. Fujita, J.C. Chow, T.G. Pace, C. Lewis, and T. Coulter (1998) CMB8 Applications and Validation Protocol for PM2.5 and VOCs, Desert Research Institute, Document NO. 1808.2D1.
  83. Winchester, J.W. and G.D. Nifong (1971) Water pollution in Lake Michigan by trace element from aerosol fallout, Water Air and Soil Pollution, 1, 50-64. https://doi.org/10.1007/BF00280779
  84. Xie, Y., P.K. Hopke, and D. Wienke (1994) Airborne particle classification with a combination of chemical composition and shape index utilizing an adaptive resonance artificial neural network, Environ. Sci. & Technol., 28(11), 1921-1928. https://doi.org/10.1021/es00060a024
  85. Yoo, J.S., D.S. Kim, and Y.S. Kim (1995) Quantitative source estimation of PM10 in Seoul area, Journal of Korea Air Pollution Research Association, 11(3), 279-290. (in Korean with English abstract)
  86. Yoon, H.J. and D.S. Kim (1997) Spatial distribution analysis of metallic elements in dustfall using GIS, Journal of Korea Air Pollution Research Association, 13(6), 463-474. (in Korean with English abstract)
  87. Zannetti, P. (2005) Air Quality Modeling. Edited by J.G. Watson and J.C. Chow, The EnviroComp Institute and Air & Waste Management Association, 457-458.
  88. Zhou, L., P.K. Hopke, and W. Liu (2004) Comparison of two trajectory based models for locating particle sources for two rural New York sites, Atmos. Environ., 38, 1955-1963. https://doi.org/10.1016/j.atmosenv.2003.12.034

Cited by

  1. Source Apportionment of PM2.5 in Gyeongsan Using the PMF Model vol.31, pp.6, 2015, https://doi.org/10.5572/KOSAE.2015.31.6.508
  2. Characteristics of PM10 in Gwangju Using Factor Analysis vol.27, pp.4, 2018, https://doi.org/10.5322/JESI.2018.27.4.241