DOI QR코드

DOI QR Code

Spatial Randomness of Fatigue Crack Growth Rate in Friction Stir Welded 7075-T651 Aluminum Alloy Welded Joints (Case of LT Orientation Specimen)

마찰교반용접된 7075-T651 알루미늄 합금 용접부의 피로균열전파율의 공간적 불규칙성 (LT 방향의 시험편에 대하여)

  • Jeong, Yeui Han (Dept. of Mechanical Design Engineering, Graduate School, Pukyong Nat'l Univ.) ;
  • Kim, Seon Jin (Dept. of Mechanical & Automotive Engineering, Pukyong Nat'l Univ.)
  • 정의한 (부경대학교 대학원 기계설계공학과) ;
  • 김선진 (부경대학교 기계자동차공학과)
  • Received : 2013.03.07
  • Accepted : 2013.07.08
  • Published : 2013.09.01

Abstract

This study aims to investigate the spatial randomness of fatigue crack growth rate for the friction stir welded (FSWed) 7075-T651 aluminum alloy joints. Our previous fatigue crack growth test data are adopted in this investigation. To clearly understand the spatial randomness of fatigue crack growth rate, fatigue crack growth tests were conducted under constant stress intensity factor range (SIFR) control testing. The experimental data were analyzed for two different materials-base metal (BM) and weld metal (WM)-to investigate the effects of spatial randomness of fatigue crack growth rate and material properties, the friction stir welded (FSWed) 7075-T651 aluminum alloy joints, namely weld metal (WM) and base metal (BM). The results showed that the variability, as evaluated by Weibull statistical analysis, of the WM is higher than that of the BM.

본 연구의 목적은 마찰교반용접된 7075-T651 알루미늄 합금 용접부에 대한 피로균열전파율의 공간적 불규칙성을 고찰하기 위한 것이다. 본 연구에서는 이전의 피로균열전파 실험 데이터를 활용하였다. 피로균열전파율의 공간적 불규칙성을 명확히 이해하기 위하여, 피로균열전파 실험은 일정 응력확대 계수범위 제어하에서 수행되었다. 재질, 즉 마찰교반용접된 7075-T651 알루미늄 합금 용접부의 용접재와 모재에 대하여 피로균열전파율의 공간적 불규칙성을 조사하기 위하여 실험 데이터가 해석되었다. 결론적으로 용접재의 변동성이 모재의 변동성보다 높게 나타났으며, Weibull 통계 해석에 의하여 변동성을 평가할 수 있음을 알았다.

Keywords

References

  1. Rama Chandra Murthy, A., Palani, G. S. and Nagesh, R. L., 2009, "Remaining Life Prediction of Cracked Stiffened Panels under Constant and Variable Amplitude Loading," International Journal of Fatigue, Vol. 29, No. 6, pp. 1125-1139.
  2. Zio, E. and Peloni, G., 2011, "Particle Filtering Prognostic Estimation of the Remaining Useful Life of Nonlinear Components," Reliability Engineering & System Safety, Vol. 96, No. 3, pp. 403-409. https://doi.org/10.1016/j.ress.2010.08.009
  3. Casarendra, W., Yang, B. S. and Kim, S. J., 2009, "Residual Life Prediction of Crack Growth Rate Based on Particle Filter and Numerical Analysis," KSPSE 2009 Autumn Conference Proceedings, pp. 53-58.
  4. Workshop, 2007, "Diagnostics, Prognostics, and Health Management (DPHM): from Theory and to Practice," IAI, July 11-13. 2007.
  5. Zio, E. and Di Maio, F., 2012, "Fatigue Crack Growth Estimation by Relevance Vector Machine," Expert Systems with Applications, Vol. 39, No.12, pp. 10681-10692. https://doi.org/10.1016/j.eswa.2012.02.199
  6. Leem, S. H., An, D., Choi, J. H., 2011, "Bayesian Parameter Estimation for Prognosis of Crack Growth under Variable Amplitude Loading," Trans. Korean Soc. Mech. Eng. A, Vol. 35, No. 10, pp. 1299-1306. https://doi.org/10.3795/KSME-A.2011.35.10.1299
  7. Virkler, D. A., Hillberry, B. M. and Goel, P. K., 1979, "The Statistical Nature of Fatigue Crack Propagation," Trans, ASME, Journal of Engineering Materials and Technology, Vol. 101, pp. 148-153. https://doi.org/10.1115/1.3443666
  8. Ortiz, K. and Kiremidjian,A. S., 1986, "Time Series Analysis of Fatigue Crack Growth Rate Data," Engineering Fracture Mechanics, Vol. 24, No. 5, pp. 657-675. https://doi.org/10.1016/0013-7944(86)90241-9
  9. Sobbxzyk, K., 1993, "Stochastic Approach of Fatigue," Springer-Verlag, Wien-New York, pp. 1-301.
  10. Jeong, H. C. and Kim, S. J., 2003, "Probabilistic Fatigue Crack Growth Behavior under Constant Amplitude Loads," Trans. Korean Soc. Mech. Eng. A, Vol. 27, No. 6, pp. 923-929. https://doi.org/10.3795/KSME-A.2003.27.6.923
  11. Hatamleh, O., Lyons, J. and Forman, R., 2007, "Laser and Shot Peening Effects on Fatigue Crack Growth in Friction Stir Welded 7075-T7351 Aluminum Alloy Joints," International Journal of Fatigue, Vol. 29, pp. 421-434. https://doi.org/10.1016/j.ijfatigue.2006.05.007
  12. Pouget, G. and Reynolds, A. P., 2008, "Residual Stress and Microstructure Effects on Fatigue Crack Growth in AA2050 Friction Stir Welds," International Journal of Fatigue, Vol. 30, pp. 463-472. https://doi.org/10.1016/j.ijfatigue.2007.04.016
  13. Kim, S. S., Lee, C. G. and Kim, S. J., 2008, "Fatigue Crack Propagation Behavior of Friction Stir Welded 7083-H31 and 6061-T651 Aluminum Alloys," Materials Science and Engineering A 478, pp. 56-64. https://doi.org/10.1016/j.msea.2007.06.008
  14. Fratini, L., Pasta, S. and Reynolds, A. P., 2009, "Fatigue Crack Growth in 2024-T351 Friction Stir Welded Joints: Longitudinal Residual Stress and Microstructural Effects," International Journal of Fatigue, Vol. 31, pp. 495-500. https://doi.org/10.1016/j.ijfatigue.2008.05.004
  15. Maduro, L. P., Baptista, C. A. R. P., Torres, M. A. S. and Souza, R. C., 2011, "Modeling the Growth of LT and TL-oriented Fatigue Cracks in Longitudinally and Transversely pre-strained Al 2524-T3 Alloy," Engineering Procedia, Vol. 10, pp. 1214-1219. https://doi.org/10.1016/j.proeng.2011.04.202
  16. Jeong, Y. H. and Kim, S. J., 2013, "Experimental Investigation of Fatigue Crack Growth behavior in FSWed 7075-T651 Aluminum Alloy Joints under Constant Stress Intensity Factor Range Control Testing," Trans. Korean Soc. Mech. Eng. A, Vol. 37, No. 6, pp. 775-782. https://doi.org/10.3795/KSME-A.2013.37.6.775
  17. Lemmem, H. J. K., lderliesten, R. C. and Benedictus, R., 2011, "Marco and Microscopic Observations of Fatigue Crack Growth in Friction Stir Welded Aluminum Joints," Engineering Fracture Mechanics, Vol. 78, pp. 930-943. https://doi.org/10.1016/j.engfracmech.2011.01.018
  18. Itagaki, H., Ogawa, T. and Yamamoto, S., 1977, "Bayesian Approach for the Estimation of the Probability Distribution of Fatigue Life," Journal of the Japan Society of Navel Architects and Ocean Engineers, Vol. 141, pp.244-249.
  19. Kim, S. J., 2003, "Characteristics of Parameters for the Distribution of Fatigue Crack Growth Lives under Constant Stress Intensity factor Control," Trans of KSOE, Vol. 17, No. 2, pp. 54-59.

Cited by

  1. Marco and Microscopic Observations of Fatigue Crack Growth in Friction Stir Welded 7075-T651 Aluminum Alloy Plates vol.18, pp.2, 2014, https://doi.org/10.9726/kspse.2014.18.2.062
  2. Effect of Specimen Orientation on Fatigue Crack Growth Behavior in Friction Stir Welded Al7075-T651 Joints vol.38, pp.12, 2014, https://doi.org/10.3795/KSME-A.2014.38.12.1317
  3. Effect of Initial Crack Location on Spatial Randomness of Fatigue Crack Growth Resistance in Friction Stir Welded AA7075-T651 Plates vol.38, pp.9, 2014, https://doi.org/10.3795/KSME-A.2014.38.9.999