DOI QR코드

DOI QR Code

Validation of the Radiometric Characteristics of Landsat 8 (LDCM) OLI Sensor using Band Aggregation Technique of EO-1 Hyperion Hyperspectral Imagery

EO-1 Hyperion 초분광 영상의 밴드 접합 기법을 이용한 Landsat 8 (LDCM) OLI 센서의 방사 특성 검증

  • Chi, Junhwa (School of Civil Engineering, Purdue University)
  • 지준화 (퍼듀대학교 토목공학과)
  • Received : 2013.08.14
  • Accepted : 2013.08.23
  • Published : 2013.08.30

Abstract

The quality of satellite imagery should be improved and stabilized to satisfy numerous users. The radiometric characteristics of an optical sensor can be a measure of data quality. In this study, a band aggregation technique and spectral response function of hyperspectral images are used to simulate multispectral images. EO-1 Hyperion and Landsat-8 OLI images acquired with about 30 minutes difference in overpass time were exploited to evaluate radiometric coefficients of OLI. Radiance values of the OLI and the simulated OLI were compared over three subsets covered by different land types. As a result, the index of agreement shows over 0.99 for all VNIR bands although there are errors caused by space/time and sensors.

위성 영상 자료에 대한 품질의 향상과 안정화는 다양한 목적을 가진 사용자들을 만족시킬 수 있다. 특히 절대 방사 검/보정은 영상의 광항적 품질을 유지하기 위한 척도가 된다. 본 연구에서는 초분광 영상 밴드 접합 기법과 분광 반응도를 이용하여 다중 분광 센서의 가상화를 통해 절대 방사 보정 계수의 적합성을 판단하였다. 적합성 분석을 위해 약 30분 차이로 촬영된 EO-1 Hyperion과 Landsat-8 OLI 센서의 영상을 이용하였고, 서로 다른 특성을 지닌 토지 피복으로 구성된 3개 지역을 선정하여 복사 에너지 값을 비교 하였다. 그 결과, 시공간에 따른 차이, 센서 수준의 차이를 제외하고 모든 밴드에서 0.99 이상의 적합성을 보여 주었다.

Keywords

References

  1. Barry, P.S., J. Mendenhall, P. Jarecke, M. Folkman, J. Pearlman, and B. Markham, 2002. EO-1 Hyperion hyperspectral aggregation and comparison with EO-1 Advanced Land Imager and Landsat 7 ETM+, Proc. of 2002 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Toronto, Canada, Jun. 24-28, pp. 1648-1651.
  2. Barsi, J.A., B.L. Markham, and J.A. Pedelty, 2011. The operational land imager: spectral response and spectral uniformity, SPIE Optical Engineering+ Applications, 81530G-81530G.
  3. Chander, G., B.L. Markham, and D.L. Helder, 2009. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors, Remote Sensing of Environment, 113(5): 893-903. https://doi.org/10.1016/j.rse.2009.01.007
  4. Dinguirard, M., and P.N. Slater, 1999. Calibration of space-multispectral imaging sensors: A review, Remote Sensing of Environment, 68(3): 194-205. https://doi.org/10.1016/S0034-4257(98)00111-4
  5. Hearn, D.R., C.J. Digenis, D.E. Lencioni, J.A. Mendenhall, J.B. Evans, and R.D. Welsh, 2001. EO-1 Advanced Land Imager overview and spatial performance, Proc. of 2001 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Sydney, NSW, Jul. 9-13, pp. 897-900.
  6. Jarecke, P., P. Barry, J. Pearlman, and B. Markham, 2001. Aggregation of Hyperion hyperspectral spectral bands into Landsat-&ETM+ spectral bands, Proc. of 2001 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Sydney, NSW, Jul. 9-13, pp. 2822-2824.
  7. Kim, J., B. Sohn, E. Chung, H. Chun, A. Suh, K. Kim, and M. Oh, 2008. Simulation of TOA visible radiance for the ocean target and its possible use for satellite sensor calibration, Korean Journal of Remote Sensing, 24(6): 535-549. https://doi.org/10.7780/kjrs.2008.24.6.535
  8. Lee, K., S. Park, S. Kim, H. Lee and J. Shin, 2012. Radiometric characteristics of Geostationary Ocean Color Imager (GOCI) for land applications, Korean Journal of Remote Sensing, 28(3): 277-285. https://doi.org/10.7780/kjrs.2012.28.3.277
  9. Liao, L.B., P.J. Jarecke, D.A. Gleichauf, and T.R. Hedman, 2000. Performance characterization of the Hyperion imaging spectrometer instrument, Proc. of International Symposium on Optical Science and Technology, pp. 264-275.
  10. Markham, B.L., P.W. Dabney, J.E. Murphy-Morris, J.A. Pedelty, E.J. Knight, G. Kvaran, and J.A. Barsi, 2010. The Landsat data continuity mission operational land imager (OLI) radiometric calibration, Proc. of 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, HI, Jul. 25-30, pp. 2283-2286.
  11. Meygret, A., M. Dinguirard, and P. Henry, 1997. Eleven Years of Experience and Data in Calibrating SPOT HRV Cameras, Proc. of International Society for Photogrammetry and Remote Sensing, Hanover.
  12. Pahlevan, N., and J.R. Schott, 2013. Leveraging EO-1 to Evaluate Capability of New Generation of Landsat Sensors for Coastal/Inland Water Studies, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(2): 360-374. https://doi.org/10.1109/JSTARS.2012.2235174
  13. Pearlman, J., S. Carman, C. Segal, P. Jarecke, P. Clancy, and W. Browne, 2011. Overview of the Hyperion imaging spectrometer for the NASA EO-1 mission, Proc. of , 2001 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Jul. 9-13, Sydney, NSW, pp. 3036-3038.
  14. Pringle, M.J., M. Schmidt, and J.S. Muir, 2009. Geostatistical interpolation of SLC-off Landsat ETM+ images, ISPRS Journal of Photogrammetry and Remote Sensing, 64(6): 654-664. https://doi.org/10.1016/j.isprsjprs.2009.06.001
  15. Slater, P.N., S.F. Biggar, K.J. Thome, D.I. Gellman, and P.R. Spyak, 1996. Vicarious radiometric calibrations of EOS sensors, Journal of Atmospheric and Oceanic Technology, 13(2):349-359. https://doi.org/10.1175/1520-0426(1996)013<0349:VRCOES>2.0.CO;2
  16. Sohn, B., S. Yoo, Y. Kim, and D. Kim, 2000. Examining a vicarious calibration method for the TOA radiance initialization of KOMPSAT OSMI, Korean Journal of Remote Sensing, 16(4): 305-313. https://doi.org/10.7780/kjrs.2000.16.4.305
  17. Storey, J., P. Scaramuzza, G. Schmidt, and J. Barsi, 2005. Landsat 7 scan line corrector-off gap filled product development, Proc. of PECORA 16 Conference, Sioux Falls, SD, Oct. 22-27, pp. 23-27.
  18. Teillet, P.M., J.L. Barker, B.L. Markham, R.R. Irish, G. Fedosejevs, and J.C. Storey, 2001. Radiometric cross-calibration of the Landsat-7 ETM+ and Landsat-5 TM sensors based on tandem data sets, Remote Sensing of Environment, 78(1): 39-54. https://doi.org/10.1016/S0034-4257(01)00248-6
  19. Thome, K., K. Arai, S. Hook, H. Kieffer, H. Lang, T. Matsunaga, A. Ono, 1998. ASTER preflight and inflight calibration and the validation of level 2 products, IEEE Transactions on Geoscience and Remote Sensing, 36(4): 1161-1172. https://doi.org/10.1109/36.701023
  20. Thorne, K., B. Markharn, P.S. Barker, and S. Biggar, 1997. Radiometric calibration of Landsat, Photogrammetric Engineering & Remote Sensing, 63(7): 853-858.

Cited by

  1. Unsupervised Classification of Landsat-8 OLI Satellite Imagery Based on Iterative Spectral Mixture Model vol.22, pp.4, 2014, https://doi.org/10.7319/kogsis.2014.22.4.053
  2. Vicarious Radiometric Calibration of RapidEye Satellite Image Using CASI Hyperspectral Data vol.23, pp.3, 2015, https://doi.org/10.7319/kogsis.2015.23.3.003
  3. Estimation of Water Quality using Landsat 8 Images for Geum-river, Korea vol.48, pp.2, 2015, https://doi.org/10.3741/JKWRA.2015.48.2.79
  4. Radiometric Cross Validation of KOMPSAT-3 AEISS vol.32, pp.5, 2016, https://doi.org/10.7780/kjrs.2016.32.5.10
  5. Automatic Cross-calibration of Multispectral Imagery with Airborne Hyperspectral Imagery Using Spectral Mixture Analysis vol.33, pp.3, 2013, https://doi.org/10.7848/ksgpc.2015.33.3.211
  6. 농업관측을 위한 KOMPSAT-3 위성의 Spectral Band Adjustment Factor 적용성 평가 vol.34, pp.6, 2013, https://doi.org/10.7780/kjrs.2018.34.6.3.5