DOI QR코드

DOI QR Code

Effect of Mean Diameter on the Explosion Characteristic of Magnesium Dusts

마그네슘의 폭발특성에 미치는 평균입경의 영향

  • Han, Ou-Sup (Occupational Safety & Health Research Institute, KOSHA) ;
  • Lee, Su-Hee (Occupational Safety & Health Research Institute, KOSHA)
  • 한우섭 (한국산업안전보건공단 산업안전보건연구원) ;
  • 이수희 (한국산업안전보건공단 산업안전보건연구원)
  • Received : 2013.07.24
  • Accepted : 2013.08.26
  • Published : 2013.08.31

Abstract

A study was carried out on the effect of particle size (mean diameter) on magnesium dust explosion. Experimental investigations were conducted in a 20-L explosion sphere, using 10 kJ chemical ignitors. Explosion tests were performed with three different dusts having mean diameter (38, 142, $567{\mu}m$) and the dust concentrations were up to $2250g/m^3$. The lower explosion limits(LEL) of magnesium dusts were about $30g/m^3$ at $38{\mu}m$ and $40g/m^3$ at $142{\mu}m$. LEL tended to increase with particle size and this means that the explosion probability of magnesium dust decreased with increase of particle size. The maximum explosion presssure ($P_m$) and $K_{st}$ (Explosion index) decreased with the increase of particle size. For magnesium powder of $567{\mu}m$, however, the explosive properties were not observed in the 5 kJ ignition energy.

본 연구에서는 마그네슘(Mg)분진의 폭발특성에 미치는 평균 입경의 영향을 조사하였다. 이를 위해 20-L분진 폭발시험장치와 10 kJ의 에너지를 갖는 화학 점화기를 사용하여 실험을 수행하였다. 실험에 사용한 Mg분진은 평균입경이 서로 다른 3가지 시료(38, 142, $567{\mu}m$)를 대상으로 분진농도를 $2250g/m^3$까지 조사하였다. Mg분진의 폭발하한농도(LEL)는 평균입경 38, $142{\mu}m$에 있어서 각각 30, $40g/m^3$ 이 얻어졌다. LEL은 입경 증가에 의해 감소 경향을 나타냈는데 Mg분진은 입경이 증가할수록 폭발 확률이 감소함을 의미한다. 최대폭발압력($P_m$)과 폭발지수($K_{st}$)는 입경이 증가하면 감소하였지만, 평균입경 $567{\mu}m$의 Mg분진의 경우에는 5 kJ의 착화에너지에서는 폭발 현상이 관찰되지 않았다.

Keywords

References

  1. Han, O.S. et al., Study on Ignition Hazards of Suspended Metal Fine Particles, Occupational Safety & Health Research Institute, KOSHA, 2012-OSHIRI-920, 5-19, (2012)
  2. Dreizin, E. L., Berman, C. H., & Vicenzi, E. P., Condensed-phase Modifications in Magnesium Particle Combustion in Air, Combustion and Flame, 122(1-2), 30-42, (2000) https://doi.org/10.1016/S0010-2180(00)00101-2
  3. Matsuda, T., Yashima, M., Nifuku, M., & Enomoto, H. , Some Aspects in Testing and Assessment of Metal Dust Explosions. Journal of Loss Prevention in the Process Industries, 14(6), 449-453 (2001) https://doi.org/10.1016/S0950-4230(01)00033-X
  4. Nifuku, M., Koyanaka, S., Ohya, H., Barre, C., Hatori, M., Fujiwara, S., Ignitability Characteristics of Aluminium and Magnesium Dusts that are generated During the shredding of Postconsumer Wastes. Journal of Loss Prevention in the Process Industries, 20(4-6), 322-329 (2007) https://doi.org/10.1016/j.jlp.2007.04.034
  5. Li, G., Yuan, C. M., Fu, Y., Zhong, Y. P., & Chen, B. Z., Inerting of Magnesium Dust cloud with Ar, N2 and CO2. Journal of Hazardous Materials, 170(1), (2009)
  6. Li, G., Yuan, C. M., Zhang, P.H., Chen, B.Z., Experiment-based Fire and Explosion Risk Analysis for Powdered Magnesium Production Methods, Journal of Loss Prevention in the Process Industries 21, 461-465 (2008) https://doi.org/10.1016/j.jlp.2008.03.003
  7. Kuai, N. S., Li, J. M., & Chen, Z., Study on the Risk Control of Magnesium Dust Explosion Based on Inherent Safety Principle, Fire Science and Technology, 29(5), 369-372 (2010)
  8. Han, O.S., Lee, K.W., Properties of Explosion and Flame Velocity with Content Ratio in Mg- Al Alloy Particles, KIGAS, 16(4), 32-37 (2012) https://doi.org/10.7842/kigas.2012.16.4.32
  9. Han, O.S., Lee, K.W., Influence of the Magnesium Content on the Explosion Properties of Mg-Al Alloy Dusts, KIGAS, 16(6), 1-6 (2012) https://doi.org/10.7842/kigas.2012.16.6.1
  10. ASTM E1226, Standard Test Method for Pressure and Rate of Pressure Rise for Combustible Dusts, The American Socirty for Testing and Materials, (1988)
  11. Dreizin, E. L., & Hoffmann, V. K., Experiments on Magnesium Aerosol Combustion in Microgravity. Combustion and Flame, 122(1-2), 20-29 (2000) https://doi.org/10.1016/S0010-2180(00)00099-7
  12. Dreizin, E. L., & Shoshin, Y., Particle Combustion Rates in Premixed Flames of Polydisperse Metal-air Aerosols. Combustion and Flame, 133, 275-287 (2003) https://doi.org/10.1016/S0010-2180(02)00571-0
  13. Vilyunov, V.N. and Zarko, V.E., Ignition of Solids, Studies in Physical and Theoretical Chemistry, No.60, 329-345 (1989)

Cited by

  1. Characteristic of Thermal Decomposition and Ignition Temperature of Magnesium Particles vol.17, pp.5, 2013, https://doi.org/10.7842/kigas.2013.17.5.69