DOI QR코드

DOI QR Code

Synthesis and Nrf2 Activating Ability of Thiourea and Vinyl Sulfoxide Derivatives

  • Shim, Young Sun (Department of Biomolecular Science, University of Science and Technology) ;
  • Hwang, Hyun Sook (Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology) ;
  • Nam, Ghilsoo (Department of Biomolecular Science, University of Science and Technology) ;
  • Choi, Kyung Il (Department of Biomolecular Science, University of Science and Technology)
  • Received : 2013.04.16
  • Accepted : 2013.05.08
  • Published : 2013.08.20

Abstract

Thiourea and vinyl sulfoxide derivatives were designed based on the structures of sulforaphane and gallic acid, prepared and tested for HO-1 inducing activity as a measure of Nrf2 activation, and inhibitory effect on NO production as a measure of anti-inflammatory activity. Both series of compounds showed moderate activity on HO-1 induction, and no inhibitory effect on NO production. Interestingly the thiourea compound 6d showed better HO-1 induction (71% SFN) than the corresponding isothiocyanate compound 6a (55% SFN). Overall, it seemed that more efficient electrophile is needed to get more effective Nrf2 activator.

Keywords

References

  1. Graumann, R.; Paris, I.; Martinez-Alvarado, P.; Rumanque, P.; Perez-Pastene, C.; Cardenas, S. P.; Marin, P.; Diaz-Grea, F.; Caviedes, R.; Caviedes, P.; Segura-Aguilar, J. Pol. J. Phar-macol. 2002, 54, 573.
  2. Drukarch, B.; Muiswinkel, F. L. Biochem. Pharmacol. 2000, 59, 1023. https://doi.org/10.1016/S0006-2952(99)00340-8
  3. Han, J. M.; Lee, Y. J.; Lee, S. Y.; Kim, E. M.; Moon, Y.; Kim, H. W.; Hwang, O. J. Pharmacol. Exp. Ther. 2007, 321, 249. https://doi.org/10.1124/jpet.106.110866
  4. Mcmahon, M.; Itoh, K.; Yamamoto, M.; Hayes, J. D. J. Biol. Chem. 2003, 278, 21592. https://doi.org/10.1074/jbc.M300931200
  5. Kensler, T. W.; Qian, G. S.; Chen, J. G.; Groopman, J. D. Nature Rev. Cancer. 2003, 3, 321. https://doi.org/10.1038/nrc1076
  6. Balogun, E.; Hoque, M.; Gong, P.; Killeen, E.; Green, C. J.; Foresti, R.; Alam, J.; Motterlini, R. Biochem. J. 2003, 371, 887. https://doi.org/10.1042/BJ20021619
  7. Lee, J. S.; Surh, Y. J. Cancer Lett. 2005, 224, 171. https://doi.org/10.1016/j.canlet.2004.09.042
  8. Innamorato, N. G.; Rojo, A. I.; Garcia-Yague, A. J.; Yamamoto, M.; Ceballos, M. L.; Cuadrado, A. J. Immunol. 2008, 181, 680. https://doi.org/10.4049/jimmunol.181.1.680
  9. Prabhu, K. R.; Pillarsetty, N.; Gali, H.; Katti, K. V. J. Am. Chem. Soc. 2000, 122, 1554. https://doi.org/10.1021/ja993504+
  10. Custelcean, R.; Gorbunova, M. G.; Bonnesen, P. V. Chem. Eur. J. 2005, 11, 1459. https://doi.org/10.1002/chem.200400973
  11. Ruano, J. L. G.; Vega, J. M. G.; Parellada, M. D.; Secundino, M. A. J. Chem. Soc. Perkin Trans. II 1988, 1573.
  12. Kitchin, K. T.; Anderson, W. L.; Suematsu, M. J. Immunol. Methods. 2001, 247, 153. https://doi.org/10.1016/S0022-1759(00)00325-2
  13. Sun, J.; Zhang, X.; Broderick, M.; Fein, H. Sensors 2003, 3, 276. https://doi.org/10.3390/s30800276

Cited by

  1. Synthesis and Biological Evaluation of Novel IM3829 (4-(2-Cyclohexylethoxy)aniline) Derivatives as Potent Radiosensitizers vol.35, pp.12, 2013, https://doi.org/10.5012/bkcs.2014.35.12.3623