DOI QR코드

DOI QR Code

Simple and Efficient Synthesis of Iron Oxide-Coated Silica Gel Adsorbents for Arsenic Removal: Adsorption Isotherms and Kinetic Study

  • Arifin, Eric (Interdisciplinary Program in Nanoscience and Technology) ;
  • Cha, Jinmyung (Department of Chemistry, Seoul National University) ;
  • Lee, Jin-Kyu (Interdisciplinary Program in Nanoscience and Technology)
  • Received : 2013.05.01
  • Accepted : 2013.05.15
  • Published : 2013.08.20

Abstract

Iron oxide (ferrihydrite, hematite, and magnetite) coated silica gels were prepared using a low-cost, easily-scalable and straightforward method as the adsorbent material for arsenic removal application. Adsorption of the anionic form of arsenic oxyacids, arsenite ($AsO^{2-}$) and arsenate ($AsO{_4}^{3-}$), onto hematite coated silica gel was fitted against non-linear 3-parameter-model Sips isotherm and 2-parameter-model Langmuir and Freundlich isotherm. Adsorption kinetics of arsenic could be well described by pseudo-second-order kinetic model and value of adsorption energy derived from non-linear Dubinin-Radushkevich isotherm suggests chemical adsorption. Although arsenic adsorption process was not affected by the presence of sulfate, chloride, and nitrate anions, as expected, bicarbonate and silicate gave moderate negative effects while the presence of phosphate anions significantly inhibited adsorption process of both arsenite and arsenate. When the actual efficiency to remove arsenic was tested against 1 L of artificial arsenic-contaminated groundwater (0.6 mg/L) in the presence competing anions, the reasonable amount (20 g) of hematite coated silica gel could reduce arsenic concentration to below the WHO permissible safety limit of drinking water of $10{\mu}g/L$ without adjusting pH and temperature, which would be highly advantageous for practical field application.

Keywords

References

  1. Mandal, B. K.; Suzuki, K. T. Talanta 2002, 58, 201. https://doi.org/10.1016/S0039-9140(02)00268-0
  2. Nordstrom, D. K. Science 2002, 296, 2143. https://doi.org/10.1126/science.1072375
  3. Mohan, D.; Pittman, C. U., Jr. J. Hazard. Mater. 2007, 142, 1. https://doi.org/10.1016/j.jhazmat.2007.01.006
  4. Malik, A. H.; Khan, Z. M.; Mahmood, Q.; Nasreen, S.; Bhatti, Z. A. J. Hazard. Mater. 2009, 168, 1. https://doi.org/10.1016/j.jhazmat.2009.02.031
  5. Rubel, F., Jr. Removal of Arsenic from Drinking Water by Adsorptive Media; USEPA, 2003.
  6. http://water.epa.gov/lawsregs/rulesregs/sdwa/arsenic/index.cfm
  7. Choong, T. S. Y.; Chuah, T. G.; Robiah, Y.; Koay, F. L. G.; Azni, I. Desalination 2007, 217, 139. https://doi.org/10.1016/j.desal.2007.01.015
  8. Zhang, S.; Niu, H.; Cai, Y.; Chao, X.; Shi, Y. Chem. Eng. J. 2010, 158, 599. https://doi.org/10.1016/j.cej.2010.02.013
  9. Zhang, G. S.; Qu, J. H.; Liu, H. J.; Liu, R. P.; Li, G. T. Environ. Sci. Technol. 2007, 41, 4613. https://doi.org/10.1021/es063010u
  10. Chowdhury, S. R.; Yanful, E. K. J. Environ. Manage. 2010, 91, 2238. https://doi.org/10.1016/j.jenvman.2010.06.003
  11. Mayo, J. T.; Yavuz, C.; Yean, S.; Cong, L.; Shipley, H.; Yu, W.; Falkner, J.; Kan, A.; Tomson, M.; Colvin, V. L. Sci. Technol. Adv. Mat. 2007, 8, 71. https://doi.org/10.1016/j.stam.2006.10.005
  12. Deliyanni, E. A.; Bakoyannakis, D. N.; Zouboulis, A. I.; Matis, K. A. Chemosphere 2003, 50, 155. https://doi.org/10.1016/S0045-6535(02)00351-X
  13. Streat, M.; Hellgardt, K.; Newton, N. L. R. Process. Saf. Environ. 2008, 86, 11. https://doi.org/10.1016/j.psep.2007.10.008
  14. Biterna, M.; Antonoglou, L.; Lazou, E.; Voutsa, D. J. Hazard. Mater. 2007, 149, 548. https://doi.org/10.1016/j.jhazmat.2007.06.084
  15. Biterna, M.; Antonoglou, L.; Lazou, E.; Voutsa, D. Chemosphere 2010, 78, 7. https://doi.org/10.1016/j.chemosphere.2009.10.007
  16. Pajany, Y. M.; Hurel, C.; Marmier, N.; Romeo, M. C.R. Chimie 2009, 12, 876. https://doi.org/10.1016/j.crci.2008.10.012
  17. Fendorf, S.; Eick, M. J.; Grossl, P.; Sparks, D. L. Environ. Sci. Technol. 1997, 31, 315. https://doi.org/10.1021/es950653t
  18. Stanic M. H.; Kalajdvic, B.; Kule, M.; Velic, N. Desalination 2008, 229, 1. https://doi.org/10.1016/j.desal.2007.06.034
  19. Maliyekkal, S. M.; Phillip, L.; Pradeep, T. Chem. Eng. J. 2009, 153, 101. https://doi.org/10.1016/j.cej.2009.06.026
  20. Zhu, H.; Jia, Y.; Wu, X.; Wang, H. J. Hazard. Mater. 2009, 172, 1591. https://doi.org/10.1016/j.jhazmat.2009.08.031
  21. Kundu, S.; Gupta, A. K. Chem. Eng. J. 2006, 122, 93. https://doi.org/10.1016/j.cej.2006.06.002
  22. Hsu, J. C.; Lin, C. J.; Liao, C. H.; Chen, S. T. J. Hazard. Mater. 2008, 153, 817. https://doi.org/10.1016/j.jhazmat.2007.09.031
  23. Zhang, F. S.; Itoh, H. Chemosphere 2005, 60, 319. https://doi.org/10.1016/j.chemosphere.2004.12.019
  24. Matsunaga, H.; Yokoyama, T.; Eldrigde, R. J.; Bolto, B. A. React. Funct. Polym. 1996, 29, 167. https://doi.org/10.1016/1381-5148(96)00041-7
  25. Guo, X.; Chen, F. Environ. Sci. Technol. 2005, 39, 6808. https://doi.org/10.1021/es048080k
  26. Hlavay, J.; Polyak, K. J. Colloid. Interf. Sci. 2005, 284, 71. https://doi.org/10.1016/j.jcis.2004.10.032
  27. Chen, W.; Parette, R.; Zou, J.; Cannon, F. S.; Dempsey, B. A. Water Res. 2007, 41, 1851. https://doi.org/10.1016/j.watres.2007.01.052
  28. Gupta, K.; Ghosh, U. C. J. Hazard. Mater. 2009, 161, 884. https://doi.org/10.1016/j.jhazmat.2008.04.034
  29. Gupta, A.; Sankararamakrishnan, N. Bioresource Technol. 2010, 101, 2173. https://doi.org/10.1016/j.biortech.2009.11.027
  30. Kundu, S.; Gupta, A. K. Colloid and Surfaces 2006, A 273, 121.
  31. Zeng, L. Water Res. 2003, 37, 4351. https://doi.org/10.1016/S0043-1354(03)00402-0
  32. Xu, Y.; Axe, L. J. Colloid. Interf. Sci. 2005, 282, 11. https://doi.org/10.1016/j.jcis.2004.08.057
  33. Cornell, R. M.; Schwertmann, U. The Iron Oxides: Structures, Properties, Reactions, Occurrence and Uses, Colour Plates Appendix; Wiley-VCH Verlag GmbH &Co. KGaA, Weinheim: 2003, pp XXII-XXIII.
  34. Brechbuhl, Y.; Christl, I.; Elzinga, E. J.; Kretzschmar, R. J. Colloid. Interf. Sci. 2012, 377, 313. https://doi.org/10.1016/j.jcis.2012.03.025
  35. Banerjee, K.; Amy, G. L.; Prevost, M.; Nour, S.; Jekel, M.; Gallagher, P. M.; Blumenschein, C. D. Water Res. 2008, 42, 3371. https://doi.org/10.1016/j.watres.2008.04.019
  36. Gupta, S. S.; Bhattacharyya, K. G. Adv. Colloid. Interfac. 2011, 162, 39. https://doi.org/10.1016/j.cis.2010.12.004
  37. Ho, Y. S. J. Hazard. Mater. 2006, 136, 681. https://doi.org/10.1016/j.jhazmat.2005.12.043
  38. Gupta, A.; Chauhan, V. S.; Sankararamakrishnan, N. Water Res. 2009, 43, 3862. https://doi.org/10.1016/j.watres.2009.05.040
  39. Gupta, A.; Sankararamakrishnan, N. Bioresource Technol. 2010, 101, 2173. https://doi.org/10.1016/j.biortech.2009.11.027
  40. Gimenez, J.; Martinez, M.; Pablo, J. D.; Rovira, M.; Duro, L. J. Hazard. Mater. 2007, 141, 575. https://doi.org/10.1016/j.jhazmat.2006.07.020
  41. Lin, T. F.; Wu, J. K. Water Res. 2001, 35, 2049. https://doi.org/10.1016/S0043-1354(00)00467-X
  42. Boddu, V. M.; Abburi, K.; Talbott, J. L.; Smith, E. D.; Haasch, R. Water Res. 2008, 42, 633. https://doi.org/10.1016/j.watres.2007.08.014
  43. Nguyen, T. V.; Vigneswaran, S.; Ngo, H. H.; Kandasamy, J. J. Hazard. Mater. 2010, 182, 723. https://doi.org/10.1016/j.jhazmat.2010.06.094
  44. Reed, B. E.; Vaughan, R.; Jiang, L. J. Environ. Eng-ASCE 2000, 126, 869. https://doi.org/10.1061/(ASCE)0733-9372(2000)126:9(869)
  45. Gupta, K.; Maity, A.; Ghosh, U. C. J. Hazard. Mater. 2010, 184, 832. https://doi.org/10.1016/j.jhazmat.2010.08.117
  46. Su, C.; Puls, R. W. Environ. Sci. Technol. 2001, 35, 4564.
  47. Hug, S. J.; Leupin, O. X.; Berg, M. Environ. Sci. Technol. 2008, 42, 6319.

Cited by

  1. Efficient Removal of Arsenic Using Magnetic Multi-Granule Nanoclusters vol.35, pp.2, 2014, https://doi.org/10.5012/bkcs.2014.35.2.605