DOI QR코드

DOI QR Code

Effects of Solution Concentration on the Structural and Magnetic Properties of Ni0.5Zn0.5Fe2O4 Ferrite Nanoparticles Prepared by Sol-gel

  • Yoo, B.S. (Department of Physics, Hankuk University of Foreign Studies) ;
  • Chae, Y.G. (Department of Physics, Hankuk University of Foreign Studies) ;
  • Kwon, Y.M. (Department of Physics, Hankuk University of Foreign Studies) ;
  • Kim, D.H. (Department of Physics, Hankuk University of Foreign Studies) ;
  • Lee, B.W. (Department of Physics, Hankuk University of Foreign Studies) ;
  • Liu, Chunli (Department of Physics, Hankuk University of Foreign Studies)
  • Received : 2013.06.28
  • Accepted : 2013.08.02
  • Published : 2013.09.30

Abstract

The $Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanoparticles about 30 nm were prepared using sol-gel method with metal nitrates dissolved in 2-methoxyathanol. The concentrations of the metal nitrates are adjusted from 0.1 to 0.75 M in order to study the influence on the structural and magnetic properties. The structure and morphology characterization revealed that the crystallinity was improved and the nanoparticle size was increased with the nutrition solution concentrations up to 0.5 M. Degraded crystallinity together with decreased nanoparticle size were observed for concentration of 0.75 M. The saturation magnetization at room temperature reached maximum at 0.5 M, which can be explained by considering the crystallinity and size effect.

Keywords

References

  1. A. Goldman, Modern Ferrite Technology, Springer, New York (2009).
  2. L. Li, L. Peng, Y. Li, and X. Zhu, J. Magn. Magn. Mater. 324, 60 (2012). https://doi.org/10.1016/j.jmmm.2011.07.039
  3. Q. Li, Y. Wang, and C. Chang, J. Alloys. Compd. 505, 523 (2010). https://doi.org/10.1016/j.jallcom.2010.06.132
  4. Dinesh Varshney and Kavita Verma, Mater. Chem. Phys. 140, 412 (2013). https://doi.org/10.1016/j.matchemphys.2013.03.062
  5. W.-C. Hsu, S. Chen, P. Kuo, C. Lie, and W. Tsai, Mater. Sci. Eng. B 111, 142 (2004). https://doi.org/10.1016/j.mseb.2004.04.009
  6. A. Dias, R. L. Moreira, N. D. S. Mohallem, and A. C. Persiano, J. Magn. Magn. Mater. 172, L9 (1997). https://doi.org/10.1016/S0304-8853(97)00134-0
  7. B. Parvatheeswara Rao, G. S. Rao, A. M. Kumar, K. H. Rao, Y. L. Murthy, S. M. Hong, C.-O. Kim, and C. G. Kim, J. Appl. Phys. 101, 123902 (2007). https://doi.org/10.1063/1.2745284
  8. W. C. Kim, Y. S. Yi, and C. S. Kim, J. Magnetics 5, 111 (2000).
  9. A. E. Virden and K. O'Grady, J. Magn. Magn. Mater. 290, 868 (2005).
  10. S. S. Jadhav, S. E. Shirsath, B. G. Toksha, S. M. Patange, D. R. Shengule, and K. M. Jadhav, Physica B 405, 2610 (2010). https://doi.org/10.1016/j.physb.2010.03.008
  11. S. M. Masoudpanah, S. A. SeyyedEbrahimi, J. Magn. Magn. Mater. 323, 2643 (2011). https://doi.org/10.1016/j.jmmm.2011.05.055
  12. K. P. Chae, W. O. Choi, J.-G. Lee, B.-S. Kang, and S. H. Choi, J. Magnetics 18, 21 (2013). https://doi.org/10.4283/JMAG.2013.18.1.021
  13. B. D. Cullity, Elements of X-ray Diffraction, 2nd ed. Addison-Wesley, Reading (1978).
  14. B. Fultz and J. M. Howe, Transmission Electron Microscopy and diffractometry of Materials, 3rd ed. Springer, NewYork (2007).
  15. S. Verma, P. A. Joy, and S. Kurian, J. Alloys. Compd. 509, 8999 (2011). https://doi.org/10.1016/j.jallcom.2011.06.047
  16. T. J. Shinde, A. B. Gadkari, and P. N. Vasambekar, J. Magn. Magn. Mater. 333, 152 (2013). https://doi.org/10.1016/j.jmmm.2012.12.049

Cited by

  1. Thin Films on Platinized Silicon Prepared by a Sol-Gel Method vol.19, pp.3, 2014, https://doi.org/10.4283/JMAG.2014.19.3.227
  2. Mössbauer studies on superexchange interactions in Fe3O4 vol.64, pp.6, 2014, https://doi.org/10.3938/jkps.64.852
  3. Enhanced Saturation Magnetization in Cobalt Doped Ni-Zn Ferrite Nanoparticles vol.28, pp.12, 2015, https://doi.org/10.1007/s10948-015-3192-5