DOI QR코드

DOI QR Code

Electrochemical Properties of Activated Carbon Supecapacitor Containing Poly(acrylonitrile) Nonwoven Separator Coated by a Hydrogel Polymer Electrolyte

Poly(acrylonitrile) 부직포 분리막에 코팅된 하이드로겔 고분자 전해질을 포함하는 활성탄 수퍼커패시터 특성

  • Latifatu, Mohammed (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Ko, Jang Myoun (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Lee, Young-Gi (Research Section of Power Control Devices, Electronics & Telecommunications Research Institute (ETRI)) ;
  • Kim, Kwang Man (Research Section of Power Control Devices, Electronics & Telecommunications Research Institute (ETRI)) ;
  • Jo, Jeongdai (Research Section of Power Control Devices, Electronics & Telecommunications Research Institute (ETRI)) ;
  • Jang, Yunseok (Research Section of Power Control Devices, Electronics & Telecommunications Research Institute (ETRI)) ;
  • Yoo, Jung Joon (Department of Printed Electronics, Korea Institute of Machinery & Materials) ;
  • Kim, Jong Huy (Department of Printed Electronics, Korea Institute of Machinery & Materials)
  • 모하메드 라티파투 (한밭대학교 화학생명공학과) ;
  • 고장면 (한밭대학교 화학생명공학과) ;
  • 이영기 (한국전자통신연구원 부품소재연구부문 전력제어소자연구실) ;
  • 김광만 (한국전자통신연구원 부품소재연구부문 전력제어소자연구실) ;
  • 조정대 (한국전자통신연구원 부품소재연구부문 전력제어소자연구실) ;
  • 장윤석 (한국전자통신연구원 부품소재연구부문 전력제어소자연구실) ;
  • 유정준 (한국기계연구원 인쇄전자연구실) ;
  • 김종휘 (한국기계연구원 인쇄전자연구실)
  • Received : 2013.07.02
  • Accepted : 2013.08.04
  • Published : 2013.10.01

Abstract

A hydrogel electrolyte consisting of potassium poly(acrylate) (PAAK) (3 wt%) in 6 M KOH aqueous solution is coated on poly(acrylonitrile) nonwoven separator to examine high-rate characteristics of activated carbon supercapacitor adopting the separator. The hydrogel is homogeneously coated on the surface pores of the nonwoven separator. The electrolyte uptake of the PAAK hydrogel maintains for 24 days higher than 230% and the coated separator shows slightly lower ionic conductivity ($2.9{\times}10^{-2}Scm^{-1}$) than that ($3.6{\times}10^{-2}Scm^{-1}$) of using 6 M KOH only. The activated carbon supercapacitor adopting the coated separator shows a specific capacitance higher than $27Fg^{-1}$ at $1000mVs^{-1}$ and a retention ratio higher than 97% after the 1000th cycle. This is due to strong interfacial contact of coated hydrogel electrolyte between the activated carbon electrode and the nonwoven separator.

6M KOH 수계 전해액에 potassium poly(acrylate) (PAAK)를 3 wt% 포함시켜 제조한 하이드로겔을 poly(acrylonitrile)부직포 분리막에 코팅하고, 이를 활성탄 수퍼커패시터의 분리막 및 전해질로 사용하여 수퍼커패시터의 고율특성 향상을 시도하였다. 이 분리막 및 전해질은전자현미경 관찰 결과 PAAK 하이드로겔이 부직포의 표면기공에 균일하게 코팅되어 있으며, 24일 동안 하이드로겔의 합습도가 230% 이상으로 균일하게 유지되었고, 6 M KOH 전해액을 사용한 경우($3.6{\times}10^{-2}Scm^{-1}$)보다 약간 낮은 $2.9{\times}10^{-2}Scm^{-1}$의 이온전도도를 나타내었다. 활성탄을 활물질로 사용한 대칭형 수퍼커패시터에 이 분리막 및 전해질을 채택한 경우 사이클릭볼타메트리 시험에서 $1000mVs^{-1}$의 고속스캔 조건에서도 $27Fg^{-1}$ 이상의 높은 비축전용량과 1000 사이클 경과후에도 97% 이상의 유지율을 나타내는데, 이는 부직포 상에 코팅된 PAAK 하이드로겔 전해질이 활성탄 전극과 부직포 분리막 사이에서 강력한 계면밀착을 유지할 수 있기 때문이다.

Keywords

References

  1. Song, J. Y., Wang, Y. Y. and Wan, C. C., "Review of Gel-Type Polymer Electrolytes for Lithium-ion Batteries," J. Power Sources, 77(2), 183-197(1999). https://doi.org/10.1016/S0378-7753(98)00193-1
  2. Kumar, Y., Hashmi, S. A. and Pandey, G. P., "Lithium Ion Transport and Ion-Polymer Interaction in PEO Based Polymer Electrolyte Plasticized with Ionic Liquid," Solid State Ion., 201(1), 73-80(2011). https://doi.org/10.1016/j.ssi.2011.08.010
  3. Raghavan, P., Choi, J.-W., Ahn, J.-H., Cheruvally, G., Chauhan, G. S., Ahn, H.-J. and Nah, C., "Novel Electrospun Poly(vinylidene fluoride-co-hexafluoropropylene) In-Situ $SiO_2$ Composite Membrane-Based Polymer Electrolyte for Lithium Batteries," J. Power Sources, 184(2), 437-443(2008). https://doi.org/10.1016/j.jpowsour.2008.03.027
  4. Yang, C., Jia, Z., Guan, Z. and Wang, L., "Polyvinylidene Fluoride Membrane by novel Electrospinning System for Separator of Liion Batteries," J. Power Sources, 189(1), 716-720(2009). https://doi.org/10.1016/j.jpowsour.2008.08.060
  5. Gopalan, A. I., Santhosh, P., Manesh, K. M., Nho, J. H., Kim, S. H., Hwang, C.-G. and Lee, K.-P., "Development of Electrospun PVdF-PAN Membrane-Based Polymer Electrolytes for Lithium Batteries," J. Memb. Sci., 325(2), 683-690(2008). https://doi.org/10.1016/j.memsci.2008.08.047
  6. Choi, E. S. and Lee, S.-Y., "Particle Size-Dependent, Tunable Porous Structure of a $SiO_2$/Poly(vinylidene fluoride-hexafluoropropylene)-Coated Poly(ethylene terephthalate) Nonwoven Composite Separator for a Lithium-ion Battery," J. Mater. Chem., 21(38), 14747-14754(2011). https://doi.org/10.1039/c1jm12246k
  7. Kritzer, P., "Nonwoven Support Material for Improved Separators in Li-Polymer Batteries," J. Power Sources, 161(2), 1335-1340 (2006). https://doi.org/10.1016/j.jpowsour.2006.04.142
  8. Croce, F., Focarete, M. L., Hassoun, J., Meschini, I. and Scrosati, B., "A Safe, High-Rate and High-Energy Polymer Lithium-ion Battery Based on Gelled Membranes Prepared by Electrospinning," Energy Environ. Sci., 4(3), 921-927(2011). https://doi.org/10.1039/c0ee00348d
  9. Lee, K.-T. and Wu, N.-L., "Manganese Oxide Electrochemical Capacitor with Potassium Poly(acrylate) Hydrogel Electrolyte," J. Power Sources, 179(1), 430-434(2008). https://doi.org/10.1016/j.jpowsour.2007.12.057
  10. Lee, K.-T., Lee, J.-F. and Wu, N.-L., "Electrochemical Characterizations on $MnO_2$ Supercapacitors with Potassium Polyacrylate and Potassium Polyacrylate-co-Polyacrylamide Gel Polymer Electrolytes," Electrochim. Acta, 54(26), 6148-6153(2009). https://doi.org/10.1016/j.electacta.2009.05.065
  11. Nam, H.-S., Wu, N.-L., Lee, K.-T., Kim, K. M., Yeom, C. G., Hepowit, L. R., Ko, J. M. and Kim, J.-D., "Electrochemical Capacitances of a Nanowire-Structured $MnO_2$ in Polyacrylate-Based Gel Electrolytes," J. Electrochem. Soc., 159(6), A899-A903(2012). https://doi.org/10.1149/2.112206jes
  12. Carol, P., Ramakrishnan, P., John, B. and Cheruvally, G., "Preparation and Characterization of Electrospun Poly(acrylonitrile) Fibrous Membrane Based Gel Polymer Electrolytes for Lithiumion Batteries," J. Power Sources, 196(23), 10156-10162(2011). https://doi.org/10.1016/j.jpowsour.2011.08.037
  13. Cho, T. H., Sakai, T., Tanase, S., Kimura, K., Kondo, Y., Tarao, T. and Tanaka, M., "Electrochemical Performances of Polyacrylonitrile Nanofiber-Based Nonwoven Separator for Lithium-ion Battery," Electrochem. Solid-State Lett., 10(7), A159-A162(2007). https://doi.org/10.1149/1.2730727
  14. Xiao, Q., Wang, X., Li, W., Li, Z., Zhang, T. and Zhang, H., "Macroporous Polymer Electrolytes Based on PVDF/PEO-b- PMMA Block Copolymer Blends for Rechargeable Lithium Ion Battery," J. Memb. Sci., 334(1-2), 117-122(2009). https://doi.org/10.1016/j.memsci.2009.02.018
  15. Rajendran, S., Prabhu, M. R. and Rani, M. U., "Ionic Conduction in Poly(vinyl chloride)/Poly(ethyl methacrylate)-Based Polymer Blend Electrolytes Complexed with Different Lithium Salts," J. Power Sources, 180(2), 880-883(2008). https://doi.org/10.1016/j.jpowsour.2008.02.063
  16. Hao, J., Lei, G., Li, Z., Wu, L., Xiao, Q. and Wang, L., "A Novel Polyethylene Terephthalate Nonwoven Separator Based on Electrospinning Technique for Lithium Ion Battery," J. Memb. Sci., 428, 11-16(2013). https://doi.org/10.1016/j.memsci.2012.09.058
  17. Croce, F., Brown, S. D., Greenbaum, S. G., Slane, S. M. and Salomon, M., "Lithium-7 NMR and Ionic Conductivity Studies of Gel Electrolytes Based on Poly(acrylonitrile)," Chem. Mater., 5(9), 1268-1272(1993). https://doi.org/10.1021/cm00033a014
  18. Yang, C. R., Perng, J. T., Wang, Y. Y. and Wan, C. C., "Conductive Behaviour of Lithium Ions in Polyacrylonitrile," J. Power Sources, 62(1), 89-93(1996). https://doi.org/10.1016/S0378-7753(96)02414-7
  19. Huang, B., Wang, Z., Li, G., Huang, H., Xue, R., Chen, L. and Wang, F., "Lithium Ion Conduction in Polymer Electrolytes Based on PAN," Solid State Ion., 85(1-4), 79-84(1996). https://doi.org/10.1016/0167-2738(96)00044-6
  20. Huang, B., Wang, Z., Chen, L., Xue, R. and Wang, F., "The Mechanism of Lithium Ion Transport in Polyacrylonitrile-Based Polymer Electrolytes," Solid State Ion., 91(3-4), 279-284(1996). https://doi.org/10.1016/S0167-2738(96)83030-X
  21. Wang, Z., Huang, B., Xue, R., Huang, X. and Chen, L., "Spectroscopic Investigation of Interactions among components and Ion Transport Mechanism in Polyacrylonitrile Based Electrolytes," Solid State Ion., 121(1-4), 141-156(1999). https://doi.org/10.1016/S0167-2738(98)00541-4
  22. Chen-Yang, Y. W., Chen, H. C., Lin, F. J. and Chen, C. C., "Polyacrrylonitrile Electrolytes 1. A Novel High-Conductivity Composite Polymer Electrolyte Based on PAN, $LiClO_4$ and a-$Al_2O_3$," Solid State Ion., 150(3-4), 327-335(2002). https://doi.org/10.1016/S0167-2738(02)00457-5
  23. Min, H.-S., Ko, J. M. and Kim, D.-W., "Preparation and Characterization of Porous Polyacrylonitrile Membranes for Lithium-ion Polymer Batteries," J. Power Sources, 119-121, 469-472(2003). https://doi.org/10.1016/S0378-7753(03)00206-4
  24. Raghavan, P., Manuel, J., Zhao, X., Kim, D.-S., Ahn, J.-H. and Nah, C., "Preparation and Electrochemical Characterization of Gel Polymer Electrolyte Based on Electrospun Polyacrylonitrile Nonwoven Membranes for Lithium Batteries," J. Power Sources, 196(16), 6742-6749(2011). https://doi.org/10.1016/j.jpowsour.2010.10.089
  25. Zhang, S. S., "A Review on the Separators of Liquid Electrolyte Li-ion Batteries," J. Power Sources, 164(1), 351-364(2007). https://doi.org/10.1016/j.jpowsour.2006.10.065
  26. Kim, S.-G., Yim, J.-B., Kim, K.-M., Lee, Y.-W., Kim, M.-S. and Kang, A.-S., "Performance of Electric Double Layer Capacitor of Rice Hull Activated Carbon Electrode," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 39(4), 424-430(2001).
  27. Kim, J., Kwan, Y., Lee, J. K. and Choi, H.-S., "Influence of oxygen-/Nitrogen-Containing Functional Groups on the Performance of Electrical Double-Layer Capacitor," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 50(6), 1043-1048(2012). https://doi.org/10.9713/kcer.2012.50.6.1043
  28. Cho, W.-J., Yeom, C. G., Kim, B. C., Kim, K. M., Ko, J. M. and Yu, K.-H., "Supercapacitive Properties of Activated Carbon Electrode in Organic Electrolytes Containing Single- and Double-Cationic Liquid Salts," Electrochim. Acta, 89, 807-813(2013). https://doi.org/10.1016/j.electacta.2012.10.085
  29. Won, J. H., Kim, Y. J., Lee, Y.-G., Kim, K. M., Kim, J. H. and Ko, J. M., "Preparation of Solid Polymer Electrolytes by Ultraviolet Radiation and the Electrochemical Properties of Activated Carbon Supercapacitor Adopting Them," J. Korean Electrochem. Soc., 16(2), 91-97(2013). https://doi.org/10.5229/JKES.2013.16.2.91
  30. Sugimoto, W., Iwata, H., Yokoshima, K., Murakami, Y. and Takasu, Y., "Proton and Electron Conductivity in Hydrous Ruthenium Oxides Evaluated by Electrochemical Impedance Spectroscopy: The Origin of Large Capacitance," J. Phys. Chem. B, 109(15), 7330-7338(2005). https://doi.org/10.1021/jp044252o

Cited by

  1. Electrochemical Properties of Activated Carbon Supecapacitor Containing Sulfonated Polypropylene Separator Coated with a Hydrogel Polymer Electrolyte vol.52, pp.5, 2014, https://doi.org/10.9713/kcer.2014.52.5.553
  2. Electrochemical Properties of Activated Carbon Supercapacitor Adopting Rayon/Poly(Ethylene Oxide) Separator and a Hydrogel Electrolyte vol.18, pp.3, 2015, https://doi.org/10.5229/JKES.2015.18.3.115
  3. 친수성 실리카와 하이드로겔 전해질이 적용된 활성탄 수퍼커패시터의 전기화학적 특성 vol.54, pp.3, 2013, https://doi.org/10.9713/kcer.2016.54.3.293
  4. 고분자-알칼리 전해질이 코팅된 Poly(acrylonitrile) 분리막을 적용한 활성탄 수퍼커패시터 특성 vol.55, pp.4, 2013, https://doi.org/10.9713/kcer.2017.55.4.467
  5. 다층구조의 고효율 수처리용 필터 제조 vol.57, pp.6, 2013, https://doi.org/10.9713/kcer.2019.57.6.841