DOI QR코드

DOI QR Code

Characterization of Commercial Membranes for Non-aqueous Vanadium Redox Flow Battery

비수계 바나듐 레독스 흐름 전지를 위한 상용 멤브레인의 특성분석

  • Sung, Ki-Won (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Shin, Sung-Hee (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Moon, Seung-Hyeon (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST))
  • 성기원 (광주과학기술원 환경공학부) ;
  • 신성희 (광주과학기술원 환경공학부) ;
  • 문승현 (광주과학기술원 환경공학부)
  • Received : 2013.06.14
  • Accepted : 2013.08.02
  • Published : 2013.10.01

Abstract

Membrane characterization methods for aqueous redox flow batteries aqueous RFBs were modified for non-aqueous RFBs. The modified characterization methods, such as ion exchange capacity, transport number, permeability and single cell test, were carried out to evaluate commercial membranes in non-aqueous electrolyte. It was found that columbic efficiency and energy efficiency in a single cell test were dependent on the ion selectivity of commercial anion exchange membranes. Neosepta AHA anion exchange membrane showed the anion transport number of 0.81, which is a relatively low ion selectivity in non-aqueous electrolyte, however, exhibited 92% of coulombic efficiency and 86% of energy efficiency in a single cell test. It was also found that a porous membrane without ion selectivity is suitable for a non-aqueous redox flow battery at a high current density.

본 연구에서는 수계 레독스 흐름전지에서 사용하는 멤브레인 특성분석방법을 개선하여 비수계 레독스 흐름 전지를 위한 멤브레인 특성분석방법을 확립하였다. 비수계 레독스 흐름 전지에 적합한 멤브레인 특성을 확인하기 위해 상용 멤브레인의 이온교환능력, 이동수, 이온 전도도, 활물질 투과도, 전지효율 실험 등 특성분석들을 수행하였다. 상용 음이온 교환 멤브레인의 특성분석 실험을 통해 충 방전 효율 및 에너지효율과 이온 선택성의 상관관계를 조사하였다. Neosepta AHA 음이온 교환 멤브레인은 이동수 측정에서 0.81의 값으로 비수계 전해질에서 비교적 낮은 이온 선택성을 보였지만, 충방전 전지효율 평가에서는 92%의 충 방전효율과 86%의 에너지효율을 각각 나타내었다. 또한 이온의 선택성이 없는 다공성 멤브레인은 높은 전류밀도의 비수계 레독스 흐름 전지에 적절함을 알 수 있었다.

Keywords

References

  1. Kwak, N.-S., Sim, J. B. and Hwang, T. S., "Synthesis and Characteristics of UV Curable Dimethyl 5-Sulfoisophthalate Sodium Saltco-diethylene Glycol with Maleic and Phthalic Anhydride Copolymers (DMSIP-co-DEG-co-MA/PA) for Application in Redox Flow Batteries," Macromol. Res., 21(9), 941-948(2013). https://doi.org/10.1007/s13233-013-1115-5
  2. Sum, E. and Skylass-Kazacos, M., "A Study of the V(II)/V(III) Redox Couple for Redox Flow Cell Applications," J. Power Sources, 15(2-3), 179-190(1985). https://doi.org/10.1016/0378-7753(85)80071-9
  3. Sum, E., Rychcik, M. and Skylass-Kazacos, M., "Investigation of the V(V)-V(IV) System for Use in the Positive Half-cell of a Redox Battery," J. Power Sources, 16(2), 85-95(1985). https://doi.org/10.1016/0378-7753(85)80082-3
  4. Mohammadi, T. and Skylass-Kazacos, M., "Modification of Anionexchange Membranes for Vanadium Redox Flow Battery Applications," J. Power Sources, 63(2), 179-186(1996). https://doi.org/10.1016/S0378-7753(96)02463-9
  5. Yang, C. Y., "Catalytic Electrodes for the Redox Flow Cell Energy Storage Device," J. Appl. Electrochem., 12(4), 425-434(1982). https://doi.org/10.1007/BF00610484
  6. Codina, G., Perez, J. R., Lopez-Atalaya, M., Vazquez, J. L. and Aldaz, A., "Development of a 0.1 kW Power Accumulation Pilot Plant Based on an Fe-Cr Redox Flow Battery Part 1. Considerations on Flow-distribution Design," J. Power Sources, 48(3), 293-302 (1994). https://doi.org/10.1016/0378-7753(94)80026-X
  7. Bartolozzi, M., "Development of Redox Flow Batteries a Historical Biblography," J. Power Sources, 27(3), 219-234(1989). https://doi.org/10.1016/0378-7753(89)80037-0
  8. Lopez-Atalaya, M., Codina, G., Perez, J. R., Vazquez, J. L. and Aldaz, A., "Optimization Studies on a Fe-Cr Redox Flow Battery," J. Power Sources, 39(2), 147-154(1992). https://doi.org/10.1016/0378-7753(92)80133-V
  9. Codina, G. and Aldaz, A., "Scale-up Studies of an Fe-Cr Redox Flow Battery Based on Shunt Current Analysis," J. Appl. Electrochem., 22(7), 668-674(1992). https://doi.org/10.1007/BF01092617
  10. Savinell, R. F., Liu, C. C., Galasco, R. T. and Chiang, S. H., "Discharge Characteristics of a Soluble Iron-Titanium Battery System," J. Electrochem. Soc., 126(3), 357-360(1979). https://doi.org/10.1149/1.2129043
  11. Zhao, P., Zhang, H., Zhou, H. and Yi, B., "Nickel Foam and Carbon Felt Applications for Sodium Polysulfide/bromine Redox Flow Battery Electrodes," Electrochimica Acta, 51(6), 1091-1098 (2005). https://doi.org/10.1016/j.electacta.2005.06.008
  12. Lim, H. S., Lackner, A. M. and Knechtli, R. C., "Zinc-Bromine Secondary Battery," J. Electrochem. Soc., 124(8), 1154-1157(1977). https://doi.org/10.1149/1.2133517
  13. Liu, Q., Sleightholme, A. E. S., Shinkle, A. A., Li, Y. and Thompson, L. T., "Non-aqueous Vanadium Acetylacetonate Electrolyte for Redox Flow Batteries," Electrochem. Commun., 11(12), 2312-2315 (2009). https://doi.org/10.1016/j.elecom.2009.10.006
  14. Matsuda, Y., Tanaka, K., Okada, M., Takasu, Y. and Morita, M., "A Rechargeable Redox Battery Utilizing Ruthenium Complexes with Non-aqueous Organic Electrolyte," J. Appl. Electrochem., 18(6), 909-914(1988). https://doi.org/10.1007/BF01016050
  15. Gupta, K. C., Abdulkadir, H. K. and Chand, S., "Polymer-immobilized N,N'-bis(acetylacetone)ethylenediamine Cobalt(II) Schiff Base Complex and Its Catalytic Activity in Comparison with That of Its Homogenized Analogue," J. Appl. Polym. Sci., 90(5), 1398-1411(2003). https://doi.org/10.1002/app.12596
  16. Chakrabarti, M. H., Dryfe, R. A. W. and Roberts, E. P. L., "Evaluation of Electrolytes for Redox Flow Battery Applications," Electrochim. Acta, 52(5), 2189-2195(2007). https://doi.org/10.1016/j.electacta.2006.08.052
  17. Yamamura, T., Shiokawa, Y., Yamana, H. and Moriyama, H., "Electrochemical Investigation of Uranium $\beta$-diketonates for All-uranium Redox Flow Battery," Electrochim. Acta, 48(1), 43-50(2002). https://doi.org/10.1016/S0013-4686(02)00546-7
  18. Liu, Q., Shinkle, A. A., Li, Y., Monroe, C. W., Thompson, L. T. and Sleightholme, A. E. S., "Non-aqueous Chromium Acetylacetonate Electrolyte for Redox Flow Batteries," Electrochem. Commun., 12(11), 1634-1637(2010). https://doi.org/10.1016/j.elecom.2010.09.013
  19. Mun, J., Lee, M. J., Park, J. W., Oh, D. J., Lee, D. Y. and Doo, S. G., "Non-aqueous Redox Flow Batteries with Nickel and Iron Tris(2,2'-bipyridine) Complex Electrolyte, Electrochem," Solid State Lett., 15(6), A80-A82(2012). https://doi.org/10.1149/2.033206esl
  20. Sleightholme, A. E. S., Shinkle, A. A., Liu, Q., Li, Y., Monroe, C. W. and Thompson, L. T., "Non-aqueous Manganese Acetylacetonate Electrolyte for Redox Flow Batteries," J. Power Sources, 196(13), 5742-5745(2011). https://doi.org/10.1016/j.jpowsour.2011.02.020
  21. Zhang, D., Lan, H. and Li, Y., "The Application of a Non-aqueous bis(acetylacetone)ethylenediamine Cobalt Electrolyte in Redox Flow Battery," J. Power Sources, 217(1), 199-203(2012). https://doi.org/10.1016/j.jpowsour.2012.06.038
  22. Shin, S.-H., Yun, S.-H. and Moon, S.-H., "A Review of Current Developments in Non-aqueous Redox Flow Batteries: Characterization of Their Membranes for Design Perspective," RSC Advances, 3(24), 9095-9116(2013). https://doi.org/10.1039/c3ra00115f
  23. Zhang, B., Zhang, S., Xing, D., Han, R., Yin, C. and Jian, X., "Quaternized Poly(phthalazinone ether ketone ketone) Anion Exchange Membrane with Low Permeability of Vanadium Ions for Vanadium Redox Flow Battery Application," J. Power Sources, 217(1), 296-302(2012). https://doi.org/10.1016/j.jpowsour.2012.06.027
  24. Seo, S.-J., Kim, B.-C., Sung, K.-W., Shim, J., Jeon, J.-D., Shin, K.-H., Shin, S.-H., Yun, S.-H., Lee, J.-Y. and Moon, S.-H., "Electrochemical Properties of Pore-filled Anion Exchange Membranes and Their Ionic Transport Phenomena for Vanadium Redox Flow Battery Applications," J. Membr. Sci., 428(1), 17-23(2013). https://doi.org/10.1016/j.memsci.2012.11.027
  25. Qiu, J., Zhang, J., Chen, J., Peng, J., Xu, L., Zhai, M., Li, J. and Wei, G., "Amphoteric Ion Exchange Membrane Synthesized by Radiation-induced Graft Copolymerization of Styrene and Dimethylaminoethyl Methacrylate Into PVDF Film for Vanadium Redox Flow Battery Applications," J. Membr. Sci., 334(1-2), 9-15(2009). https://doi.org/10.1016/j.memsci.2009.02.009
  26. Fang, J., Xu, H., Wei, X., Guo, M., Lu, X., Lan, C., Zhang, Y., Liu, Y. and Peng, T., "Preparation and Characterization of Quaternized Poly(2,2,2-trifluoroethyl methacrylate-co-N-vinylimidazole) Membrane for Vanadium Redox Flow Battery," Polym. Adv. Technol., 24(2), 168-173(2013). https://doi.org/10.1002/pat.3066
  27. Teng, X., Zhao, Y., Xi, J., Wu, Z., Qiu, X. and Chen, L., "Nafion/organic Silica Modified $TiO_2$ Composite Membrane for Vanadium Redox Flow Battery via in situ Sol-gel Reactions," J. Membr. Sci., 341(1-2), 149-154(2009). https://doi.org/10.1016/j.memsci.2009.05.051
  28. Wang, N., Yu, J., Zhou, Z., Fang, D., Liu, S. and Liu, Y., "SPPEK/TPA Composite Membrane as a Separator of Vanadium Redox Flow Battery," J. Membr. Sci., 437(1), 114-121(2013). https://doi.org/10.1016/j.memsci.2013.02.053

Cited by

  1. Perfluorinated Sulfonic Acid based Composite Membranes for Vanadium Redox Flow Battery vol.19, pp.1, 2016, https://doi.org/10.5229/JKES.2016.19.1.21
  2. Insights on the Electrochemical Activity of Porous Carbonaceous Electrodes in Non-Aqueous Vanadium Redox Flow Batteries vol.164, pp.14, 2017, https://doi.org/10.1149/2.0621714jes
  3. 효율적인 전 바나듐 레독스 흐름 전지를 위한 세공충진 음이온교환막의 최적 설계 vol.30, pp.1, 2013, https://doi.org/10.14579/membrane_journal.2020.30.1.21