DOI QR코드

DOI QR Code

Numerical Study of Laminar Flow and Heat Transfer in Curved Pipe Flow

곡관에서의 층류 유동 및 열전달에 관한 수치해석 연구

  • Received : 2013.06.17
  • Accepted : 2013.08.01
  • Published : 2013.10.01

Abstract

A three dimensional numerical simulation of laminar flow and heat transfer in fully developed curved pipe flow has been performed to study the effects of Dean number and pipe curvature on the flow and temperature fields under the thermal boundary condition of axially uniform wall heat flux. The Reynolds number under consideration ranges from 100 to 4000, and the Prandtl number is 0.71. The curvature ratios are 0.01, 0.025, 0.05 and 0.1. The axial velocity and temperature profiles and the local Nusselt number obtained from the present study are in good agreement with the previous numerical and experimental results currently available. To show the effects of pipe curvature on the flow and heat transfer, the resistance coefficients and heat transfer coefficients are computed and compared with the results of the previous theoretical and experimental studies. The averaged Nusselt number is correlated with Dean and Prandtl numbers. Furthermore, the critical Reynolds number for transition to turbulent flow is observed to depend upon the curvature ratio.

축방향으로 벽면에서 일정한 열 유속의 경계조건을 갖는 곡관 유동에서 유동장 및 온도장에서의 Dean 수와 곡률의 영향을 알아보기 위한 층류 유동 및 열전달에 관한 3차원 수치모사를 수행하였다. 연구에서 수행된 레이놀즈 수의 범위는 100~4000이며 Prandtl 수는 0.71이다. 곡률 비는 0.01, 0.025, 0.05 그리고 0.1이다. 본 연구에서 계산된 축방향 속도 및 온도 분포, 국소 Nusselt 수는 기존의 수치 및 실험 결과들과 잘 일치하였다. 유동 및 열전달에 대한 곡률의 영향을 알아보기 위하여 저항계수 및 열전달 계수가 계산되었고 기존의 이론 및 실험 연구의 결과들과 비교하였다. Dean 수와 Prandtl 수에 의한 평균 Nusselt 수의 관계식을 유도하였다. 또한 곡률의 변화에 따른 난류 유동으로 천이하는 임계 레이놀즈 수의 변화를 알아보았다.

Keywords

References

  1. Adler, M., 1934, "Stromung in Gekrummten Rohren," Z. Angew. Math. Mec., Vol. 14, pp. 257-275. https://doi.org/10.1002/zamm.19340140502
  2. Ito, H., 1959, "Friction Factors for Turbulent Flow in Curved Pipes," J. Basic Eng., Vol. 81, pp. 123-134.
  3. Mori, Y. and Nakayama, W., 1965, "Study on Forced Convective Heat Transfer in Curved Pipes (1st Report, Laminar region)," Int. J. Heat Mass Transfer, Vol. 8, pp. 67-82. https://doi.org/10.1016/0017-9310(65)90098-0
  4. Mori, Y. and Nakayama, W., 1967, "Study on Forced Convective Heat Transfer in Curved Pipes (2nd Report, Turbulent region)," Int. J. Heat Mass Transfer, Vol. 10, pp. 37-59. https://doi.org/10.1016/0017-9310(67)90182-2
  5. Mori, Y. and Nakayama, W., 1967, "Study on Forced Convective Heat Transfer in Curved Pipes (3rd Report, Theoretical analysis under the Condition of Uniform Wall Temperature and Practical Formulae)," Int. J. Heat Mass Transfer, Vol. 10, pp. 681-695. https://doi.org/10.1016/0017-9310(67)90113-5
  6. Collins, W. M. and Dennis, S. C. R., 1975, "The Steady Motion of a Viscous Fluid in a Curved Tube," Q. J. Mech. Appl. Math., Vol. 28, pp. 133-156. https://doi.org/10.1093/qjmam/28.2.133
  7. Wang, C. Y., 1981, "On the Low-Reynolds-Number Flow in a Helical Pipe," J. Fluid Mech., Vol. 108, pp. 185-194. https://doi.org/10.1017/S0022112081002073
  8. Dennis, S. C. R. and Ng, M., 1982, "Dual Solutions for Steady Laminar Flow Through a Curved Tube," Q. J. Mech. Appl. Math., Vol. 35, pp. 305-324. https://doi.org/10.1093/qjmam/35.3.305
  9. Germano, M., 1982, "On the Effect of Torsion on a Helical Pipe Flow," J. Fluid Mech., Vol. 125, pp. 1-8. https://doi.org/10.1017/S0022112082003206
  10. Germano, M., 1989, "The Dean Equations Extended to a Helical Pipe Flow," J. Fluid Mech., Vol. 203, pp. 289-305. https://doi.org/10.1017/S0022112089001473
  11. Berger, S. A., Talbot, L. and Yao, L.-S., 1983, "Flow in Curved Pipe," Ann. Rev. Fluid Mech., Vol. 15, pp. 461-512. https://doi.org/10.1146/annurev.fl.15.010183.002333
  12. Ito, H., 1987, "Flow in Curved Pipes," JSME Int. J., Vol. 30, pp. 543-552. https://doi.org/10.1299/jsme1987.30.543
  13. Akiyama, M. and Cheng, K. C., 1971, "Boundary Vorticity Method for Laminar Forced Convection Heat Transfer in Curved Pipes," Int. J. Heat Mass Transfer, Vol. 14, pp. 1659-1675. https://doi.org/10.1016/0017-9310(71)90075-5
  14. Kalb, C. E. and Seader, J. D., 1972, "Heat and Mass Transfer Phenomena for Viscous Flow in Curved Circular Tubes," Int. J. Heat Mass Transfer, Vol. 15, pp. 801-817. https://doi.org/10.1016/0017-9310(72)90122-6
  15. Kalb, C. E. and Seader, J. D., 1974, "Fully Developed Viscous-Flow Heat Transfer in Curved Circular Tubes with Uniform Wall Temperature," AIChE J., Vol. 20, No. 2, pp. 340-346. https://doi.org/10.1002/aic.690200220
  16. Patankar, S. V., Pratap, V. S. and Spalding, D. B., 1974, "Prediction of Laminar Flow and Heat Transfer in Helically Coiled Pipes," J. Fluid Mech., Vol. 62, pp. 539-551. https://doi.org/10.1017/S0022112074000796
  17. Yao, L. -S. and Berger, S. A., 1978, "Flow in Heated Curved Pipes," J. Fluid Mech., Vol. 88, pp. 339-354. https://doi.org/10.1017/S0022112078002141
  18. Zapryanov, Z., Christov, C. and Toshev, E., 1980, "Fully Developed Laminar Flow and Heat Transfer in Curved Tubes," Int. J. Heat Mass Transfer, Vol. 23, pp. 873-880. https://doi.org/10.1016/0017-9310(80)90042-3
  19. Prusa, J. and Yao, L. -S., 1982, "Numerical Solution for Fully Developed Flow in Heated Curved Tubes," J. Fluid Mech., Vol. 123, pp. 503-522. https://doi.org/10.1017/S0022112082003176
  20. Boersma, B. J. and Nieuwstadt, F. T. M., 1996, "Large-Eddy Simulation of Turbulent Flow in a Curved Pipe," ASME J. Fluids Eng., Vol. 118, pp. 248-254. https://doi.org/10.1115/1.2817370
  21. Boersma, B. J., 1997, Electromagnetic Effects in Cylindrical Pipe Flow, Ph.D. Thesis, Delft University Press.
  22. Huttl, T. J., Wagner, C. and Friedrich, R., 1999, "Navier-Stokes Solutions of Laminar Flows Based on Orthogonal Helical Coordinates," Int. J. Numer. Meth. Fluids, Vol. 29, pp. 749-763. https://doi.org/10.1002/(SICI)1097-0363(19990415)29:7<749::AID-FLD815>3.0.CO;2-4
  23. Huttl, T. J. and Friedrich, R., 2000, "Influence of Curvature and Torsion on Turbulent Flow in Helically Coiled Pipes," Int. J. Heat Fluid Flow, Vol. 21, pp. 345-353. https://doi.org/10.1016/S0142-727X(00)00019-9
  24. Huttl, T. J. and Friedrich, R., 2001, "Direct Numerical Simulation of Turbulent Flows in Curved and Helically Coiled Pipes," Comput. Fluids, Vol. 30, pp. 591-605. https://doi.org/10.1016/S0045-7930(01)00008-1
  25. Batchelor, G. K., 1970, An Introduction to Fluid Mechanics, Appendix 2, Cambridge University Press.
  26. Akselvoll, K. and Moin, P., 1996, "An Efficient Method for Temporal Integration of the Navier-Stokes Equation in Confined Axisymmetric Geometries," J. Comput. Phys., Vol. 125, pp. 454-463. https://doi.org/10.1006/jcph.1996.0107
  27. Kim, J. and Moin, P., 1985, "Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations," J. Comput. Phys., Vol. 59, pp. 308-323. https://doi.org/10.1016/0021-9991(85)90148-2
  28. Patankar, S. V., Liu, C. H. and Sparrow, E. M., 1977, "Fully Developed Flow and Heat Transfer in Ducts Having Streamwise-Periodic Variations of Cross-Sectional Area," ASME J. Heat Transfer, Vol. 99, pp. 180-186. https://doi.org/10.1115/1.3450666
  29. White, C. M., 1929, "Streamline Flow Through Curved Pipes," Proc. R. Soc., Vol. 123, pp. 645-663. https://doi.org/10.1098/rspa.1929.0089
  30. Ito, H., 1969, "Laminar Flow in Curved Pipes," Z. Angew. Math. Mec., Vol. 49, pp. 653-663. https://doi.org/10.1002/zamm.19690491104
  31. Dravid, A. N., Smith, K. A., Merrill, E. W. and Brian, P. L. T., 1971, "Effect of Secondary Fluid Motion on Laminar Flow Heat Transfer in Helically Coiled Tubes," AIChE J., Vol. 17, pp. 1114-1122. https://doi.org/10.1002/aic.690170517