DOI QR코드

DOI QR Code

Global Star Formation Efficiency of Local Galaxies

  • Shim, Hyunjin (Department of Earth Science Education, Kyungpook National University)
  • Received : 2013.07.13
  • Accepted : 2013.08.30
  • Published : 2013.09.30

Abstract

This study presents the global star formation efficiency (SFE) of 272 local star-forming galaxies based on the HI gas mass, stellar mass, star formation rate (SFR), and morphology. The SFE increases as the stellar mass increases while the specific SFR decreases. The SFE is enhanced for galaxies with large H$\acute{a}$ equivalent widths, which is primarily due to the large SFR, not due to the large available amount of gas. The SFE is also enhanced by a factor of ~2 for merging systems compared to the normal spirals, showing that the merger-induced high pressure and density environment are crucial for the active star formation. Based on the SFR scaling relation, I present a SFR calibration formula using the HI gas mass.

Keywords

References

  1. Arnouts, S., et al., 2005, The GALEX VIMOS-VLT deep survey measurement of the evolution of the 1500A luminosity function. The astrophysical journal letter, 619, 43-46, doi:10.1086/426733.
  2. Baldwin, J.A., Phillips, M.M., and Terlevich, R., 1981, Classification parameters for the emission-line spectra of extragalactic objects. Publications of the astronomical society of the pacific. 93, 5-19, doi: 10.1086/130766.
  3. Bauer, A., Drory, N., Hill, G.J., and Feulner, G., 2005, Specific star formation rates to redshift 1.5. The astrophysical journal letter, 621, 89-92, doi:10.1086/429289.
  4. Bournaud, F., 2010, Star formation and structure formation in galaxy interactions and mergers. In Smith, B. et al. (eds.), Proceedings of a conference held 19-22 July 2009 at east Tennessee state university. Astronomical society of the pacific, San Francisco, 2010, p.177.
  5. Bouwens, R. J., Illingworth, G.D., Blakeslee, J.P., and Franx, M., 2006, Galaxies at z-6: the UV luminosity function and luminosity density from 506 HUDF, HUDF parallel ACS field, and GOODS i-dropouts. The astrophysical journal, 653, 53-85, doi:10.1086/498733.
  6. Bouwens, R.J., Illingworth, G.D., Franx, M., and Ford, H., 2007, UV luminosity functions at z-4, 5, and 6 from the Hubble ultra deep field and other deep Hubble space telescope ACS fields: evolution and star formation history. The astrophysical journal, 670, 928-958, doi:10.1086/521811.
  7. Brinchmann, J., et al. 2004, The physical properties of starforming galaxies in the low-redshift universe. Monthly notices of the royal astronomical society, 351, 1151-179, doi:10.1111/j.1365-2966.2004.07881.x.
  8. Clark, P. C., Bonnell, I.A., and Klessen, R.S., 2008, The star formation efficiency and its relation to variations in the initial mass function. Monthly notices of the royal astronomical society, 386, 3-10, doi:10.1111/j.1365-2966.2008.13005.x.
  9. Combes, F., et al., 2011, Galaxy evolution and star formation efficiency at 0.2
  10. Coppin, K.E.K., et al., 2009, A submillimetre galaxy at z=4.76 in the LABOCA survey of the extended Chandra deep field- south. Monthly notices of the royal astronomical society, 395, 1905-1914, doi:10.1111/j.1365-2966.2009.14700.x.
  11. Crain, R.A., et al., 2007, The baryon fraction of ECDM haloes. Monthly notices of the royal astronomical society, 377, 41-49, doi: 10.1111/j.1365-2966.2007.11598.x.
  12. Daddi, E., et al., 2009, Two bright submillimeter galaxies in a z=4.05 protocluster in GOODS-north, and accurate radio-infrared photometric redshifts. The astrophysica journal, 2009, 694, 1517-1538, doi:10.1088/0004-637X/694/2/1517.
  13. Dekel, A. and Birnboim, Y., 2006, Galaxy bimodality due to cold flows and shock heating. Monthly notices of the royal astronomical society, 368, 2-20, doi:10.1111/j.1365-2966.2006.10145.x.
  14. Elbaz, D., et al., 2007, The reversal of the star formationdensity relation in the distant universe. Astronomy & Astrophysics, 468, 33-48, doi:10.1051/0004-6361:20077525.
  15. Fumagalli, M., et al., 2012, $H\alpha$ equivalent widths from the 3d-HST survey: evolution with redshift and dependence on stellar mass. The astrophysical journal letters, 757, 22, doi:10.1088/2041-8205/757/2/L22.
  16. Genzel, R., et al., 2010, A study of the gas-star formation relation over cosmic time. Monthly notices of the royal astronomical Society, 407, 2091-2108, doi:10.1111/j.1365-2966.2010.16969.x.
  17. Giovanelli, R., et al., 2005, The Arecibo legacy fast ALFA survey. I. science goals, survey design, and strategy. The astronomical journal, 130, 2598-2612, doi:10.1086/497431.
  18. Gracia-Carpio, J., Garcia-Burillo, S., Planesas, P., Fuente, A., and Usero, A., 2008, Evidence of enhanced star formation efficiency in luminous and ultraluminous infrared galaxies. Astronomy & Astrophysics, 479, 703-717, doi:10.1051/0004-6361:20078223.
  19. Haynes, M.P., et al., 2011, The Arecibo legacy fast ALFA survey: the $\alpha$.40 HI source catalogs, its characteristics and their impact on the derivation of the HI mass function. The astronomical journal, 142, 170, doi:10.1088/0004-6256/142/5/170.
  20. Kauffmann, G., et al., 2003, Stellar masses and star formation histories for $10^5$ galaxies from the Sloan digital sky survey. Monthly notices of the royal astronomical society, 341, 33-53, doi:10.1046/j.1365-8711.2003.06291.x.
  21. Kennicutt, R.C.Jr., 1998, The global Schmidt law in starforming galaxies. The astrophysical journal, 498, 541, doi:10.1086/305588.
  22. Krumholz, M.R. and McKee, C.F., 2005, A general theory of turbulence-regulated star formation, from spirals to ultraluminous infrared galaxies. The astrophysical journal, 630, 250-268, doi:10.1086/431734.
  23. Leroy, A.K., et al., 2008, The star formation efficiency in nearby galaxies: measuring where gas forms stars effectively. The astronomical journal, 136, 2782-2845, doi:10.1088/0004-6256/136/6/2782.
  24. McKee, C.F. and Ostriker, E.C., 2007, Theory of star formation. Annual review of astronomy & astrophysics, 45, 565-687, doi:10.1146/annurev.astro.45.051806.110602.
  25. Salim, S., et al., 2007, UV star formation rates in the local universe. The astrophysical journal supplement series, 173, 267-292, doi:10.1086/519218.
  26. Schiminovich, D., et al., 2010, The GALEX Arecibo SDSS survey-II. the star formation efficiency of massive galaxies. Monthly notices of the royal astronomical society, 408, 919-934, doi:10.1111/j.1365-2966.2010.17210.x.
  27. Schmidt, M., 1959, The rate of star formation. The astrophysical journal, 129, 243, doi:10.1086/146614.
  28. Shim, H., et al., 2011, z-4 $H\alpha$ emitters in the great observatories origins deep survey: tracing the dominant mode for growth of galaxies. The astrophysical journal, 738, 69, doi:10.1088/0004-637X/738/1/69.
  29. Steidel, C.C., et al., 1999, Lyman-break galaxies at z>4 and the evolution of the ultraviolet luminosity density at high redshift. The astrophysical journal, 519, 1-17, doi:10.1086/307363.
  30. Young, J.S., Allen, L., Kenney, J.D.P., Lesser, A., and Rownd, B., 1996, The global rate and efficiency of star formation in spiral galaxies as a function of morphology and environment. The astronomical journal, 112, 1903, doi:10.1086/118152.

Cited by

  1. Properties of Brightest Cluster Galaxies as a Function of Cluster Classification Type vol.36, pp.5, 2015, https://doi.org/10.5467/JKESS.2015.36.5.427