DOI QR코드

DOI QR Code

Anti-inflammatory Effect of Angelicae Gigantis Radix Water Extract on LPS-stimulated Mouse Macrophages

Lipopolysaccharide로 유발된 마우스 대식세포의 염증매개성 Cytokine 생성증가에 대한 참당귀 물추출물의 효능 연구

  • Han, Hyo-Sang (Department of Health Administration, College of Social Sciences, Joongbu University)
  • Received : 2013.08.15
  • Accepted : 2013.09.17
  • Published : 2013.09.30

Abstract

Objectives : The purpose of this study was to investigate the effects of Angelicae Gigantis Radix Water Extract(AG) on the production of proinflammatory mediators in RAW 264.7 cells stimulated with lipopolysaccharide(LPS). Method : RAW 264.7 cells were cotreated with AG(50 and 100 ug/mL) and lipopolysaccharide(LPS; 1 ug/mL) for 24 hours. After 24 hour treatment, using Bead-based multiplex cytokine assay, concentrations of various cytokines such as interleukin(IL)-6, IL-$1{\beta}$, IL-10, tumor necrosis factor-alpha(TNF-${\alpha}$), granulocyte colony-stimulating factor(G-CSF), granulocyte macrophage colony-stimulating factor(GM-CSF), interferon inducible protein-10(IP-10), leukemia inhibitory factor(LIF), lipopolysaccharide-induced chemokine(LIX), monocyte chemoattractant protein-1(MCP-1), macrophage colony-stimulating factor(M-CSF), macrophage inflammatory protein(MIP)-$1{\alpha}$, MIP-$1{\beta}$, MIP-2, Regulated on Activation, Normal T cell Expressed and Secreted(RANTES) and vascular endothelial growth factor(VEGF) were measured. Result : AG significantly inhibited LPS-induced production of TNF-${\alpha}$, MIP-$1{\alpha}$, G-CSF, RANTES, IL-10, and M-CSF from LPS-stimulated RAW 264.7 cells at the concentrations of 50 and 100 ug/mL. AG significantly inhibited LPS-induced production of MIP-$1{\beta}$, MIP-2, GM-CSF, and IL-6 from LPS-stimulated RAW 264.7 cells at the concentrations of 50 ug/mL. AG significantly inhibited LPS-induced production of VEGF from LPS-stimulated RAW 264.7 cells at the concentrations of 100 ug/mL. But AG did not show any significant effect on the production of MCP-1, LIF, LIX, IP-10 and IL-$1{\beta}$ from LPS-induced RAW 264.7 cells. Conclusion : These results suggest that AG has anti-inflammatory effect related with its inhibition of proinflammatory mediators such as TNF-${\alpha}$, MIP-$1{\alpha}$, G-CSF, RANTES, IL-10, MIP-$1{\beta}$, MIP-2, GM-CSF, IL-6, VEGF and M-CSF in LPS-induced macrophages.

Keywords

References

  1. Wu B. Shennongbencaojing. Beijing : Renminweishengchubanshe. 1982 : 64.
  2. Kim IR, Kim HC, Kuk YB, Park SJ, Park YK, Park JH, Seo BI, Seo YB, Shin MK, Lee YJ, LeeYC, Lee JH, Leem KH, Cho SI, Chung JK, Joo YS, Choi HY. Boncho-Hak. Seoul : Young-Lim Press. 2007 : 629-31.
  3. Kim DH, Kim HM, Ryu JH, Eom JY, Kim SC, Yang JH, Cho MK, Lim JP, Hong SH. Hanbangyakrihak. Seoul : Shinilbukseu. 2007 : 337-43.
  4. Chi HJ, Kim HS. Studies on Essential Oils of Plants of Angelica Genus in Korea (I) Essential Oils of Angelicae gigantis Radix. Kor J Pharmacogn. 1988 ; 19(4) : 239-47.
  5. Park MJ, Kang SJ, Kim AJ. Hypoglycemic Effect of Angelica gigas Naki Extract in Streptozotocin-induced Diabetic Rats. Kor J Food Nutr. 2009 ; 22(2) : 246-51.
  6. Ham MS, Kim SS, Hong JS, Lee JH, Chung EK, Park YS, Lee HY. Screening and Comparison of Active Substances of Angelica gigas Nakai Produced in Kangwon and Angelica acutiloba Kitogawa Produced in Japan. Kor J Appl Microbiol Biotechnol. 1996 ; 24(5) : 624-9.
  7. Heo SJ, Yang MO, Cho EJ. Analysis of Umbelliferaeceae Wild Plants and Antioxidative Activity of Pork Meat Products Added with Wild Plants. Kor J Soc Food Cookery Sci. 2001 ; 17(5) : 456-63.
  8. Lee S, Shin DS, Kim JS, Oh KB, Kang SS. Antibacterial coumarins from Angelica gigas roots. Arch Pharm Res. 2003 ; 26(6) : 449-52. https://doi.org/10.1007/BF02976860
  9. Ahn KS, Sim WS, Kim HM, Han SB, Kim IH. Immunostimulating Components from the Root of Angelica gigas Nakai. Kor J Pharmacogn. 1986 ; 27(3) : 254-61.
  10. Park SK, Hong SK, Kim HJ, Kim BY, Kim TG, Kang JS, Kim DU. Cosmetic Effect of Angelica gigas Nakai Root Extracts. Kor Chem Eng Res. 2009 ; 47(5) : 553-7.
  11. Kim GS, Park CG, Jeong TS, Cha SW, Baek NI, Song KS. ACAT(Acyl-CoA:cholesterol Acyltransferase) Inhibitory Effect and Quantification of Pyranocurmarin in Different Parts of Angelica gigas Nakai. J Appl Biol Chem. 2009 ; 52(4) : 188-94. https://doi.org/10.3839/jabc.2009.032
  12. Shin KH, Han JM, Lee IR. Effect of the Constituents of Angelicae gigantis Radix on Hepatic Drug Metabolizing Enzymes. Kor J Pharmacogn. 1996 ; 27(4) : 323-7.
  13. Kim YO, Ha NN, Boo YM, Park SY, Park JY, Yu YB, Shin JS, An DK, Kim HC. Neuroprotective Effect of Angelica gigas Extracts on the Brain Ischemia Induced by Four-Vessel Occlusion in Rats. Kor J Herbology. 2002 ; 17(2) : 151-7.
  14. Politch JA, Tucker L, Bowman FP, Anderson DJ. Concentrations and significance of cytokines and other immunologic factors in semen of healthy fertile men. Hum Reprod. 2007 ; 22(11) : 2928-35. https://doi.org/10.1093/humrep/dem281
  15. Korea Food and Drug Administration. The Korean Herbal Pharmacopoeia. Seoul : Korea Food and Drug Administration. 2012 : 26-7.
  16. Chen GT. Benchogangmutongshi. Beijing : Xueyuanchubanshe. 1992 : 615-21.
  17. Ahn KS, Sim WS, Kim IH. Decursin a cytotoxic agent and protein kinase c activator from the root of angelica gigas. Planta medica. 1996 ; 62(1) : 7-9. https://doi.org/10.1055/s-2006-957785
  18. Kil JS, Kim MG, Choi HM, Lim JP, Boo Y, Kim EH, Kim JB, Kim HK, Leem KH. Inhibitory effects of Angelicae Gigantis Radix on osteoclast formation. Phytother Res. 2008 ; 22(4) : 472-6. https://doi.org/10.1002/ptr.2342
  19. An JJ, Kim DH, Moon YS, Jung JS, Ahn EM, Baek NI, Song DK. Protection against beta-amyloid peptideinduced memory impairment with long-term administration of extract of Angelica gigas or decursinol in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2004 ; 28(1) : 25-30. https://doi.org/10.1016/S0278-5846(03)00168-4
  20. Kang SY, Kim YC. Neuroprotective coumarins from the root of Angelica gigas Structure-activity relationships. Arch Pharm Res. 2007 ; 30(11) : 1368-73. https://doi.org/10.1007/BF02977358
  21. Daehanbyeongrihakhoe. Byeongrihak. Seoul : Komoonsa. 1995 : 71-104.
  22. Moon TC, Chung KC, Son KH, Kim HP, Kang SS, Chang HW. Screening of Cyclooxygenase-2(COX-2) Inhibitors from Natural Products. Yakhak Hoeji. 1998 ; 42(2) : 214-9.
  23. Cohen J. The immunopathogenesis of sepsis. Nature. 2002 ; 420(6917) : 885-91. https://doi.org/10.1038/nature01326
  24. Cho HY, Noh KH, Cho MK, Jang JH, Lee MO, Kim SH, Song YS. Anti-oxidative and Anti-inflammatory Effects of Genistein in BALB/c Mice Injected with LPS. J Kor Soc Food Sci Nutr. 2008 : 37(9) : 1126-35. https://doi.org/10.3746/jkfn.2008.37.9.1126
  25. Beutler B, Cerami A. Tumor necrosis, cachexia, shock, and inflammation: a common mediator. Annu Rev Biochem. 1988 ; 57 : 505-18. https://doi.org/10.1146/annurev.bi.57.070188.002445
  26. Melgarejo E, Medina MA, Sánchez-Jiménez F, Urdiales JL. Monocyte chemoattractant protein-$1\alpha$ key mediator in inflammatory processes. Int J Biochem Cell Biol. 2009 ; 41(5) : 998-1001. https://doi.org/10.1016/j.biocel.2008.07.018
  27. Metcalf D, Nicola NA. Proliferative effects of purified granulocyte colony-stimulating factor(G-CSF) on normal mouse hemopoietic cells. J Cell Physiol. 1983 ; 116(2) : 198-206. https://doi.org/10.1002/jcp.1041160211
  28. Nagata S, Tsuchiva M, Asano S, Kaziro Y, Tamazaki T, Yamamoto O, Hirata Y, Kubota N, Oheda M, Nomura H, Ono M. Molecular cloning and expression of cDNA for human granulocyte colony-stimulating factor. Nature. 1986 ; 319(6052) : 415-8. https://doi.org/10.1038/319415a0
  29. Teran LM, Davies DE. The chemokines:their potential role in allergic inflammation. Clin Exp Allergy. 1996 ; 26(9) : 1005-19. https://doi.org/10.1111/j.1365-2222.1996.tb00640.x
  30. Bartocci A, Pollard JW, Stanley ER. Regulation of colony-stimulating Factor 1 during pregnancy. J Exp Med. 1986 ; 164(3) : 956-61. https://doi.org/10.1084/jem.164.3.956
  31. Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun. 1989 ; 161(2) : 851-8. https://doi.org/10.1016/0006-291X(89)92678-8
  32. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983 ; 219(4587) : 983-5. https://doi.org/10.1126/science.6823562
  33. Lee KS, Kim YS, Lee HN, O YJ, Shin SS, park KJ, Hwang SC. Interstitial lung disease, the significance of Macrophage Inflammatory Protein-$1\beta$. The Korean Academy of Tuberculosis and Respiratory Diseases Fall Conference abstracts published. 2006 ; 103 : 77.
  34. Kim DS, Han JH, Kwon HJ.. NF-kappaB and c-Jun-dependent regulation of macrophage inflammatory protein-2 gene expression in response to lipopolysaccharide in RAW 264.7 cells. Mol Immunol. 2003 ; 40(9) : 633-43. https://doi.org/10.1016/j.molimm.2003.07.001
  35. Han DH, Kwak MG, Choi BH, Ha Y, Park HS, Min BH, Woo ZH, Park SR. Effects of GM-CSF on the Mobilization of Bone Marrow Stem Cells. Tissue Eng Regen Med. 2005 ; 2(3) : 274-9.
  36. Nacajima yizeumi. Myeonyeokhakipmoon. Seoul : Jigumoonhwasa. 1997 : 126-7.
  37. Jana M, Dasgupta S, Saha RN, Liu X, Pahan K. Induction of tumor necrosis factor-alpha (TNF-alpha) by interleukin-12 p40 monomer and homodimer in microglia and macrophages. J Neurochemistry. 2003 ; 86 : 519-28.
  38. Srivastava M, Jung S, Wilhelm J, Fink L, Bühling F, Welte T, Bohle RM, Seeger W, Lohmeyer J, Maus UA. The inflammatory versus constitutive trafficking of mononuclear phagocytes into the alveolar space of mice is associated with drastic changes in their gene expression profiles. J Immunol. 2005 ; 175(3): 1884-93. https://doi.org/10.4049/jimmunol.175.3.1884
  39. Kyama CM, Mihalyi A, Simsa P, Mwenda JM, Tomassetti C, Meuleman C, D'Hooghe TM. Non-steroidal targets in the diagnosis and treatment of endometriosis. Curr Med Chem. 2008 ; 15(10) : 1006-17. https://doi.org/10.2174/092986708784049595