DOI QR코드

DOI QR Code

A study on the short-range underwater communication using visible LEDs

근거리 수중통신을 위한 가시광 LED 적용에 관한 연구

  • 손경락 (한국해양대학교 전자통신공학과)
  • Received : 2013.02.27
  • Accepted : 2013.05.14
  • Published : 2013.05.31

Abstract

Robust and high speed underwater communication is severely limited when compared to communications in terrestial. In free space, RF communication operates over long distances at high data rates. However, the obstacle in seawater is the severe attenuation due to the conducting nature. Acoustic modems are capable of long range communication up to several tens of kilometers, but it has low data-rate, high power consumption and low propagation speed. An alternative means of underwater communication is based on optics, wherein high data rates are possible. In this paper, the characteristics of underwater channel in the range of visible wavelength is investigated. And the possibility of optical wireless communication in underwater is also described. The LED-based transceiver and CMOS sensor module are integrated in the system, and the performance of image transmission was demonstrated.

수중통신은 지상통신에 비하여 통신채널의 강건성과 고속데이터 전송 측면에서 상당한 제약 요인을 가지고 있다. 공기 중에서 RF 통신은 장거리 전송에도 높은 데이터 전송률을 보이지만, 수중에서는 매질의 전도특성으로 인하여 전파에너지의 심각한 감쇠현상이 발생하여 통신이 어려운 실정이다. 현재 수중에서 수 십 킬로미터 이상의 장거리 통신이 가능한 음향파 통신 모뎀이 개발되어 사용되고 있지만 낮은 전송율과 높은 전력 소모, 느린 전송속도가 문제로 거론되고 있다. 이 문제를 보완할 수 있는 방안으로 빛을 이용한 근거리 수중무선통신이 대안으로 연구되고 있다. 본 논문에서는 가시광 파장영역에서 수중통신 채널 특성을 분석하였다. 자유공간 광무선 통신과 비교하여 수중 가시광 통신기술의 가능성을 제시하고, LED 기반 트랜시버와 CMOS 센서를 통신시스템에 장착하여 수중이미지 전송을 위한 광무선 통신 시스템을 시연하였다.

Keywords

References

  1. M. Stojanovic, "Underwater wireless communications: current achievements and research challenges," IEEE Oceanic Engineering Society Newsletter, pp. 1-6, 2006.
  2. R. B. Manjula, S. M. Sunilkumar, "Issues in underwater acoustic sensor network," Journal of Computer and Electrical Engineering, vol. 3, no. 1, pp. 101-110, 2011.
  3. F. Schill, U. R. Zimmer, and J. Trumpf, "Visible spectrum optical communication and distance sensing for underwater applications," Proceeding of Australasian Conference on Robotics and Automation, pp. 1-8, 2004.
  4. http://www.wirelessfibre.co.uk; Accessed 4 Feb 2013.
  5. I. F. Akyildiz, D. Pompili, and T. Melodia, "Underwater acoustic sensor networks: research challenges," vol. 3, pp. 257-279, Ad Hoc Networks, 2005. https://doi.org/10.1016/j.adhoc.2005.01.004
  6. D. Anguita, D. Brizzolara, and G. Parodi, "VHDL modules and circuits for underwater optical wireless communication systems," WSEAS Trans. Communications, vol. 9, pp. 525-552, 2010.
  7. L. Liu, S. Zhou, and J-H. Cui, "Prospects and problems of wireless communication for underwater sensor networks," Wireless communications & mobile computing, pp. 977-994, 2008.
  8. N. Farr, A. D. Chave, L. Freitag, S. N. White, D. Yoerger, and F. Sonnichsen, "Optical modem technology for seafloor observatories," Oceans, pp. 1-6, 2006.
  9. N. Farr, A. Bowen, J. Ware, C. Pontbriand, and M. Tivey, "An integrated, underwater optical/acoustic communications system," Ocean Physics and Engineering, pp. 1-6, 2010.
  10. D. Anguita, D. Brizzolara, G. Parodi, and Q. Hu, "Optical wireless underwater communication for AUV: preliminary simulation and experimental results," IEEE Oceans, pp. 1-5, June 2011.
  11. M. Doniec, C. Detweiler, I. Vasilescu, and D. Rus, "Using optical communication for remote underwater robot operation," International Conference on Intelligent Robots and Systems, pp. 4017-4022, 2010.
  12. http://moeri.kordi.re.kr; Accessed 7 Feb 2013.
  13. http://155.230.104.21; Accessed 7 Feb 2013.
  14. Y. J. Kim and K. R. Sohn, "A study on the frequency modulation-based audio transmission system for short-range underwater optical wireless communications," Journal of the Korean Society of Marine Engineering, vol. 36, no. 1, pp. 166-171, 2012 (in Korean). https://doi.org/10.5916/jkosme.2012.36.1.166
  15. K. R. Sohn and C. W. Sohn, "Optical wireless remote control using indoor LED lightings," Journal of the Korean Society of Marine Engineering, vol. 36, no. 8, pp. 1111-1116, 2012 (in Korean). https://doi.org/10.5916/jkosme.2012.36.8.1111

Cited by

  1. Performance analysis of the visible light communication in seawater channel vol.37, pp.5, 2013, https://doi.org/10.5916/jkosme.2013.37.5.527
  2. Implementation of underwater visible light communication system interlinked with bluetooth vol.38, pp.7, 2014, https://doi.org/10.5916/jkosme.2014.38.7.923
  3. Performance Investigation of Visible Light Communication Using Super Bright White LED and Fresnel Lens vol.39, pp.1, 2015, https://doi.org/10.5916/jkosme.2015.39.1.63
  4. A study on indoor visible light communication localization based on manchester code using walsh code vol.39, pp.9, 2015, https://doi.org/10.5916/jkosme.2015.39.9.959
  5. Radio map fingerprint algorithm based on a log-distance path loss model using WiFi and BLE vol.40, pp.1, 2016, https://doi.org/10.5916/jkosme.2016.40.1.62
  6. A study on 3-D indoor localization based on visible-light communication considering the inclination and azimuth of the receiver vol.40, pp.7, 2016, https://doi.org/10.5916/jkosme.2016.40.7.647
  7. Adaptive planar vision marker composed of LED arrays for sensing under low visibility vol.2, pp.2, 2013, https://doi.org/10.12989/arr.2018.2.2.141