DOI QR코드

DOI QR Code

A Structural Performance Test of a Full-scale Pretension PSC Girder

실물모형 프리텐션 PSC 거더의 구조성능 시험

  • 김태균 (동국대학교 건설환경공학과) ;
  • 이두성 ((주)홍지 기술연구소) ;
  • 이성철 (동국대학교 건설환경공학과)
  • Received : 2012.11.23
  • Accepted : 2013.05.15
  • Published : 2013.09.30

Abstract

The main purpose of this study is to investigate the static behavior of a prestressed concrete (PSC) girder using pre-tension method. A 30m long full-scale pretension PSC girder is fabricated by the portable fabrication system and tested. All results have been compared to those obtained from F.E.A results. Deflections at the middle of girders have been measured for evaluation. Also, strains of concrete at the middle of span have been measured. From the results of experimental, the load when initial crack was developed was obtained to be 1.75 time the unfactered design load in the full-scale girder specimen. Also, the data of specimen are satisfied the desgin requirements of ductility on the Korea Bridge Design Specification(2010). In service state, the vertical deflection at center of test specimen when a initial crack was developed is satisfied the vertical deflection requirement under live load of the Korea Bridge Design Specification(2010). To verify the experimental results, we numerical analyze the test and confirmed that the data were similar with results from the test above. The pretension girder fabricated in site were found to have enough strength for safety under and after construction.

본 연구에서는 프리텐션 공법으로 제작된 프리스트레스 콘크리트 거더의 정적거동을 조사하는 것이 주요 목적이다. 이동식 제작대를 이용하여 현장에서 제작된 지간 30m의 프리텐션 거더에 대한 재하시험이 수행되었다. 모든 시험결과는 수치해석결과와 비교되었으며, 거더의 중앙부에 대한 변위와 변형률이 측정되었다. 실험결과에서 실물모형 시험체의 초기균열발생 하중은 사용하중 보다 1.75배 증가된 하중에서 발생하였다. 또한 연성설계기준을 만족하여 시험체는 초기균열 발생후에 취성파괴하지 않고 연성 파괴될 것으로 판단되었다. 사용성 검토에서 균열발생시의 처짐값이 도로교설계기준(2010)에서 제시한 활하중 재하시의 허용처짐량을 만족하였다. 유한요소 해석결과와 시험결과는 전체적인 거동이 매우 유사하게 나타났으며, 현장제작 프리텐션 거더의 사용성과 안전성 측면에서는 큰 문제가 없는 것으로 판단된다.

Keywords

References

  1. AASHTO (2007). AASHTO LRFD Bridge design for highway bridges, 5th Ed., American Association of State Highway Transportation Officials, Washington, D.C.
  2. Boshore, Edwin C. (1965). "Durability of prestressed concrete beams." PCI JOURNAL, Vol. 10, No. 5, pp. 49-59. https://doi.org/10.15554/pcij.10011965.49.59
  3. Eurocode 2 (2002). Design of concrete structures, Brussels, July.
  4. Ghosh, S. K. and Fintel, Mark. (1986). "Development length of prestressing strands, including debonded strands and allowable concrete stresses in pretensioned members." PCI Journal, Vol. 31, No. 5, pp. 38-57. https://doi.org/10.15554/pcij.09011986.38.57
  5. Kaar, P. H. and Hanson, N. W. (1975). "Bond fatigue tests of beams simulating pretensioned concrete crossties." PCI JOURNAL, Vol. 20, No. 5, pp. 65-80. https://doi.org/10.15554/pcij.09011975.65.80
  6. Kim, J. H., Moon, D. Y., Zi, G. S. and Kim, G. S. (2008). "Dynamic behavior of pretension concrete member during detensioning." Journal of The Korean Society of Civil Engineers, KSCE, Vol. 28, No. 5A, pp. 747-756 (in Korean).
  7. Korea Concrete Institute (2007). Design standard for concrete structures (in Korean).
  8. Marshall, W. T. (1966). "A theory for end zone stresses in pretensioned concrete beam." PCI JOURNAL, Vol. 11, No. 2, pp. 45-51. https://doi.org/10.15554/pcij.04011966.45.51
  9. Marshall, W. T. and Mattock, A. H. (1962). "Control of horizontal cracking in the ends of pretensioned prestressed concrete girders." PCI JOURNAL, Vol. 7, No. 5, pp. 56-74. https://doi.org/10.15554/pcij.10011962.56.74
  10. Ministry of Land, Transport and maritime affairs of sounth korea (2008). Road design manual, chapter 5. bridge (in Korean).
  11. Ministry of Land, Transport and maritime affairs of south korea (2010). Standards for road bridge design (in Korean).
  12. Mirza, J. F. and Tawfik, M. E. (1978). "End cracking in prestressed members during detensioning." PCI JOURNAL, Vol. 23, No. 2, pp. 66-78.
  13. Mitchell, Denis, Cook, William D., Khan, Arshade A. and Tham, Thomas (1993). "Influence of high strength concrete on transfer and development length of pretensioning strand." PCI JOURNAL, Vol. 38, No. 3, pp. 52-66.
  14. Nawy, Edward G. and Huang, P. T. (1977). "Crack and deflection control of pretensioned prestressed beams." PCI JOURNAL, Vol. 22, No. 3, pp. 30-47. https://doi.org/10.15554/pcij.05011977.30.47
  15. Oh, B. H. and Kim, E. S. (2000). "Influencing factors and evaluation of transfer lengths in pretensioned prestressed concrete members." Journal of The Korean Society of Civil Engineers, KSCE, Vol. 20, No. 6A, pp. 945-956 (in Korean).
  16. Precast/Prestressed Concrete Institute (2003). Precast Prestressed Concrete BRIDGE DESIGN MANUAL (I), (II).
  17. RABBAT, B. G., Kaar, P. H., Russell, H. G. and Bruce, Jr., R. N. (1979). "Fatigue tests of pretensioned girders with blanketed and draped strands." PCI JOURNAL, Vol. 24, No. 4, pp. 88-115.
  18. Roller, J. J., Russel, H. G., Bruce, R. N. and Martin, B. T. (1995). "Long-term performance of prestressed, pretensioned high strength concrete bridge girder." PCI JOURNAL, Vol. 40, No. 6, pp. 48-59. https://doi.org/10.15554/pcij.11011995.48.59
  19. Russell, B. W. and Burns, N. H. (1994). "Fatigue tests on prestressed concrete beams made with debonded strands." PCI JOURNAL, Vol. 39, No. 6, pp. 70-88.
  20. Seguirant, S. J. (1998). "New deep wsdot standard sections extend spans of prestressed concrete girders." PCI JOURNAL, Vol. 43, No. 4, pp. 92-119. https://doi.org/10.15554/pcij.07011998.92.119
  21. Shin, H. M. (2007). Prestress concrete, 10th Ed., Dong myung sa (in Korean).

Cited by

  1. Parameter Analysis for Design of Pretension Girder Bridge for Urban Maglev Transit vol.19, pp.4, 2016, https://doi.org/10.7782/JKSR.2016.19.4.515