DOI QR코드

DOI QR Code

Improving Usage of the Korea Meteorological Administration's Digital Forecasts in Agriculture: 2. Refining the Distribution of Precipitation Amount

기상청 동네예보의 영농활용도 증진을 위한 방안: 2. 강수량 분포 상세화

  • Kim, Dae-Jun (College of Life Science, Kyung Hee University) ;
  • Yun, Jin I. (College of Life Science, Kyung Hee University)
  • 김대준 (경희대학교 식물환경신소재공학과) ;
  • 윤진일 (경희대학교 식물환경신소재공학과)
  • Received : 2013.09.01
  • Accepted : 2013.09.21
  • Published : 2013.09.30

Abstract

The purpose of this study is to find a scheme to scale down the KMA (Korea Meteorological Administration) digital precipitation maps to the grid cell resolution comparable to the rural landscape scale in Korea. As a result, we suggest two steps procedure called RATER (Radar Assisted Topography and Elevation Revision) based on both radar echo data and a mountain precipitation model. In this scheme, the radar reflection intensity at the constant altitude of 1.5 km is applied first to the KMA local analysis and prediction system (KLAPS) 5 km grid cell to obtain 1 km resolution. For the second step the elevation and topography effect on the basis of 270 m digital elevation model (DEM) which represented by the Parameter-elevation Regressions on Independent Slopes Model (PRISM) is applied to the 1 km resolution data to produce the 270 m precipitation map. An experimental watershed with about $50km^2$ catchment area was selected for evaluating this scheme and automated rain gauges were deployed to 13 locations with the various elevations and slope aspects. 19 cases with 1 mm or more precipitation per day were collected from January to May in 2013 and the corresponding KLAPS daily precipitation data were treated with the second step procedure. For the first step, the 24-hour integrated radar echo data were applied to the KLAPS daily precipitation to produce the 1 km resolution data across the watershed. Estimated precipitation at each 1 km grid cell was then regarded as the real world precipitation observed at the center location of the grid cell in order to derive the elevation regressions in the PRISM step. We produced the digital precipitation maps for all the 19 cases by using RATER and extracted the grid cell values corresponding to 13 points from the maps to compare with the observed data. For the cases of 10 mm or more observed precipitation, significant improvement was found in the estimated precipitation at all 13 sites with RATER, compared with the untreated KLAPS 5 km data. Especially, reduction in RMSE was 35% on 30 mm or more observed precipitation.

본 연구는 기상청에서 제공하는 강수 실황 혹은 예보로부터 농업부문에서 활용 가능한 수준의 상세한 강수분포도를 제작하기 위한 방안으로서, 레이더 반사강도를 KLAPS 5km 강수자료에 적용하여 1km 격자해상도로 상세화 하는 1단계와, 고해상도 DEM에 근거한 지표면 경사방향(지향면)에 따라 고도-강수량 회귀 계수를 달리하여 지형효과를 반영하는 2단계 등으로 이루어진 추정기법을 고안하였다. 이 기법의 현실세계 적용방법 모색 및 신뢰도 평가를 위해 경상남도 하동군 악양면을 실험 집수역으로 설정하고 2013년 1월부터 5월까지 총 19사례의 강수에 대해 기상청으로부터 KLAPS 강수자료를 수집하였다. 1단계로는 강수일의 24시간 적산 레이더에코 자료를 이용하여 1km 해상도로 자료의 규모를 축소하였다. 2단계로는 1km 격자점의 값을 가상의 관측자료로 삼아 270m 해상도에서 PRISM 기반의 지형효과를 반영한 강수량 분포도를 생성하였다. 실험 집수역에 13대의 무인기상관측장비를 다양한 고도 및 지형조건에서 설치하고, 추정된 강수분포도로부터 13개 지점에 해당하는 격자점의 자료를 추출하여 실측값과 비교하였다. 일 강수량 10mm 이상의 사례에서는 모든 관측지점에서 추정오차 감소효과가 인정되었으며, 특히 일강수량이 30mm 이상인 사례에서 평균 35% 이상의 오차감소효과를 확인하였다.

Keywords

References

  1. Ahn, S. J., and J. G. Kim, 2003: Estimation of Z-R relationships between radar reflectivity and rainfall rate. Journal of Korea Water Resources Association 36(1), 13-21. (in Korean with English abstract) https://doi.org/10.3741/JKWRA.2003.36.1.013
  2. Battan, L. J., 1973: Radar Observation of the Atmosphere. University of Chicago Press, 323pp.
  3. Chung, U., K. Yun, K. S. Cho, J. H. Yi, and J. I. Yun, 2009: The PRISM-based rainfall mapping at an enhanced grid cell resolution in complex terrain. Korean Journal of Agricultural and Forest Meteorology 11(2), 72-78. (In Korean with English abstract) https://doi.org/10.5532/KJAFM.2009.11.2.072
  4. Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statisticaltopographic model for mapping climatological precipitation over mountainous terrain. Journal of Applied Meteorology 33, 140-158. https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2
  5. Johnson, G. L., P. A. Pasteries, G. H. Taylor, and C. Daly, 1999: Spatial climate products - a new dimension for climate applications. Preprints, 11th Conference on Applied Climatology, Dallas, Texas, American Meteorological Society, 107-113.
  6. Kim, Y. S., O. R. Park, and S. O. Hwang, 2002: Realtime operation of the Korea local analysis and prediction system at METRI. Asia-Pacific Journal of Atmospheric Sciences 38(1), 1-10. (In Korean with English abstract)
  7. Nalder, I. A., and R. W. Wein, 1998: Spatial interpolation of climatic normals: test of a new method in the Canadian boreal forest. Agricultural and Forest Meteorology 92, 211-225. https://doi.org/10.1016/S0168-1923(98)00102-6
  8. Marshall, J. S., and W. Mc K. Palmer, 1948: The distribution of raindrops with size. Journal of Meteorology, 5, 165-166. doi: 10.1175/1520-0469(1948)005<0165:TDORWS> 2.0.CO;2
  9. Phillips, D. L., J. Dolph, and D. Marks, 1992: A comparison of geostatistical procedures for spatial analysis of precipitation in mountainous terrain. Agricultural and Forest Meteorology 58, 119-141. https://doi.org/10.1016/0168-1923(92)90114-J
  10. Shin, S. C., M. G. Kim, M. S. Suh, D. K. Rha, D. H. Jang, C. S. Kim, W. S. Lee, and Y. H. Kim, 2008: Estimation of high resolution gridded precipitation using GIS and PRISM. Atmosphere 18, 71-81. (In Korean with English abstract)
  11. 안광득, 이정순, 남지은, 조요한, 이용희, 하종철, 이희춘, 정관영, 2012: 초단기 기상분석 및 예측시스템(KLAPS) 개선. Proceedings of the Spring Meeting of Korean Meteorological Society 2012, Korean Meteorological Society, 134-135.

Cited by

  1. Building and Applying Scheme of Big Data for Enhancement of Hazard Map Utilization vol.16, pp.2, 2016, https://doi.org/10.9798/KOSHAM.2016.16.2.205
  2. Drought Index Development for Agricultural Drought Monitoring in a Catchment vol.16, pp.4, 2014, https://doi.org/10.5532/KJAFM.2014.16.4.359
  3. Agrometeorological Early Warning System: A Service Infrastructure for Climate-Smart Agriculture vol.16, pp.4, 2014, https://doi.org/10.5532/KJAFM.2014.16.4.403
  4. An Operational Site-specific Early Warning of Weather Hazards for Farmers and Extension Workers in a Mountainous Watershed vol.17, pp.4, 2015, https://doi.org/10.5532/KJAFM.2015.17.4.290
  5. A drought index designed for field-scale water management vol.51, pp.3, 2015, https://doi.org/10.1007/s13143-015-0070-9