DOI QR코드

DOI QR Code

Beam structural system moving forces active vibration control using a combined innovative control approach

  • Lee, Ming-Hui (Department of Civil Engineering, Chinese Military Academy)
  • Received : 2012.06.11
  • Accepted : 2012.11.30
  • Published : 2013.08.25

Abstract

This study proposes an innovative control approach to suppress the responses of a beam structural system under moving forces. The proposed control algorithm is a synthesis of the adaptive input estimation method (AIEM) and linear quadratic Gaussian (LQG) controller. Using the synthesis algorithm the moving forces can be estimated using AIEM while the LQG controller offers proper control forces to effectively suppress the beam structural system responses. Active control numerical simulations of the beam structural system are performed to evaluate the feasibility and effectiveness of the proposed control technique. The numerical simulation results show that the proposed method has more robust active control performance than the conventional LQG method.

Keywords

Acknowledgement

Supported by : National Science Council of Taiwan

References

  1. Bogler, P.L. (1987), "Tracking a maneuvering target using input estimation", IEEE T. Aero. Elec. Sys., 23(3), 298-310.
  2. Chang, T.P., Liu, M.F. and O, H.W. (2009), "Vibration analysis of a uniform beam traversed by a moving vehicle with random mass and random velocity", Struct. Eng. Mech., 31(6), 737-749. https://doi.org/10.12989/sem.2009.31.6.737
  3. Frischgesel, T. Popp, K., Reckmann, H. and Schutte, O. (1998), "RegelungeineselastischenFahrwegs inter Verwendungeines variable Beobachters", Tech. Mech., 18(1), 44-55.
  4. Fun, T. (1995), Random vibration of engineering, Defense industries publication, Peking.
  5. Huang, M., Liu, J.K., Law, S.S. and Lu, Z.R. (2011), "Vibration analysis of pre-stressed concrete bridge subjected to moving vehicles", Interact. Multiscale Mech., 4(4), 273-289. https://doi.org/10.12989/imm.2011.4.4.273
  6. Klasztorny, M. (2001), "Vertical vibrations of a multi-span beam steel bridge induced by a superfast passenger train" , Struct. Eng. Mech., 12, 267-281. https://doi.org/10.12989/sem.2001.12.3.267
  7. Kwakernaak, H. and Sivan, R. (1972), Linear optimal control system, Wiley, New York.
  8. Kwon, H.C. Kim, M.C. and Lee, I.W. (1998), "Vibration control of bridges under moving loads", Comput. Struct., 66(4), 473-480. https://doi.org/10.1016/S0045-7949(97)00087-4
  9. Lewis, F.L. and Syrmos, V.L. (1972), Optimal control, Wiley, New York.
  10. Meirovitch, L. Principles and Techniques of Vib., Prentice-Hall, NewYork,1997.
  11. Min, D.J. Lee, J.S. and Kim, M.Y. (2012), "Dynamic interaction analysis of actively controlled maglev vehicles and guide way girders considering nonlinear electromagnetic forces", Coupled Syst. Mech., 1(1), 39-57. https://doi.org/10.12989/csm.2012.1.1.039
  12. Nikkhoo, A. Rofooei, F.R. and Shadnam, M.R. (2007), "Dynamic behavior and modal control of beams under moving mass", J. Sound Vib., 306, 712-724. https://doi.org/10.1016/j.jsv.2007.06.008
  13. Onoda, J. and Minesugi, K. (1996), "Semi-active vibration suppression by variable damping members", AIAA J., 34(2), 355-361. https://doi.org/10.2514/3.13071
  14. Reckmann, H. Popp, K. and Ruskowski, M. (1998), "Control of an elastic guide way using linear drivers", In LIDIA98, 114-117. Tokyo.
  15. Reis, M. and Pala, Y. (2009), "Dynamic response of a beam supported with damper under moving load", Struct. Eng. Mech., 31(4), 477-480. https://doi.org/10.12989/sem.2009.31.4.477
  16. Rofooei, F.R. and Nikkhoo, A., (2009), "Application of active piezoelectric patches in controlling the dynamic response of a thin rectangular plate under a moving mass", Int. J. Solids Struct., 46, 2429-2443. https://doi.org/10.1016/j.ijsolstr.2009.01.034
  17. Simsek, M. and Kocaturk, T. (2009), "Free and forced vibration of a functionally graded beam subjected to a 135 concentrated moving harmonic load", Compos. Struct., 90, 465-473. https://doi.org/10.1016/j.compstruct.2009.04.024
  18. Simsek, M. (2011), "Force vibration of an embedded single-walled carbon nano-tube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059
  19. Song, G., Sethi, V. and Li, H.N. (2006), "Vibration control of civil structures using piezo-ceramic smart materials: a review", J. Struct Eng. - ASCE, 28, 1513-1524. https://doi.org/10.1016/j.engstruct.2006.02.002
  20. Stancioiu, D. and Ouyang, H. (2011), "Structural modifications by the method of receptances", Proceedings of the International Conference on Structural Engineering Dynamics, Bucharest.
  21. Tommy, H.T.C. and Demeke, B.A., (2006), "Theoretical study of moving force identification on continuous bridges", J. Sound Vib., 295, 870-883. https://doi.org/10.1016/j.jsv.2006.01.059
  22. Tuan, P.C., Fong, L.W. and Huang, W.T. (1996), "Analysis of on-line inverse heat conduction problems", J. Chung Cheng Inst. Tech., 25(1), 59-73.
  23. Tuan, P.C. and Hou, W.T. (1998), "Adaptive robust weighting input estimation method for the 1-D inverse heat conduction problem", Numer. Heat T., 34, 439-456. https://doi.org/10.1080/10407799808915067
  24. Yau, J.D. (2009), "Vehicle/bridge interactions of a rail suspension bridge considering support movements", Interact. Multiscale Mech., 2(3), 263-276. https://doi.org/10.12989/imm.2009.2.3.263
  25. Yang, J.R., Li, J.Z. and Chen, Y.H. (2010), "Vibration analysis of CFST tied-arch bridge due to moving vehicles", Interact. Multiscale Mech., 3(4), 389-403. https://doi.org/10.12989/imm.2010.3.4.389
  26. Yu, L., Chan, T.H.T. and Zhu, J.H. (2008), "A MOM-based algorithm for moving force identification: Part II . Experiment and comparative studies", Struct. Eng. Mech., 29, 155-169. https://doi.org/10.12989/sem.2008.29.2.155
  27. Wang, R.T. and Lin, J.S. (1998), "Vibration of T-type Timoshenko frames subjected to moving loads", Struct. Eng. Mech., 6, 229-243. https://doi.org/10.12989/sem.1998.6.2.229
  28. Wang, R.T. and Sang, Y.L. (1999), "Out-of-plane vibration of multi-span curved beam due to moving loads", Struct. Eng. Mech., 7, 361-375. https://doi.org/10.12989/sem.1999.7.4.361
  29. Zarfam, R. and Khaloo, A.R. (2012), "Vibration control of beams on elastic foundation under a moving vehicle and random lateral excitations", J. Sound Vib., 331, 1217-1232. https://doi.org/10.1016/j.jsv.2011.11.001
  30. Zribi, M., Almutairi, N.B. and Abdel-Ruhman, M. (2006), "Control of vibrations due to moving loads on suspension bridges", Nonlinear Anal. Model. Contr., 11(3), 293-318.

Cited by

  1. Multiple-source multiple-harmonic active vibration control of variable section cylindrical structures: A numerical study vol.81, 2016, https://doi.org/10.1016/j.ymssp.2016.02.065
  2. Optimal placement of piezoelectric actuators and sensors on a smart beam and a smart plate using multi-objective genetic algorithm vol.15, pp.4, 2015, https://doi.org/10.12989/sss.2015.15.4.1041