DOI QR코드

DOI QR Code

The Effect of Hydrolyzed Jeju Ulva pertusa on the Proliferation and Type I Collagen Synthesis in Replicative Senescent Fibroblasts

제주 구멍갈파래 가수분해물에 의한 노화된 섬유아세포 증식 및 콜라겐 합성증진 효과

  • 고현주 (한불화장품(주) 기술연구소) ;
  • 김경범 (한불화장품(주) 기술연구소) ;
  • 이동환 (한불화장품(주) 기술연구소) ;
  • 이근수 (한불화장품(주) 기술연구소) ;
  • 표형배 (한불화장품(주) 기술연구소)
  • Received : 2013.03.12
  • Accepted : 2013.05.16
  • Published : 2013.09.30

Abstract

Skin dermal fibroblast is the major collagen-producing cell type in human skin. As aging process continues in human skin, collagen production is reduced and fragmentation is increased, which is initiated by matrix metalloproteinase-1 (MMP-1). This imbalance of collagen homeostasis impairs the structure and function of dermal collagenous extracellular matrix (ECM), thereby promoting skin aging. Cysteine-rich protein 61 (CCN1), a member of the CCN family, negatively regulates collagen homeostasis in primary human skin dermal fibroblast cells. It is known in aging fibroblast cells that elevated CCN1 expression substantially reduces type I procollagen and concurrently increases MMP-1, which initiates fibrillar collagen degradation. And proliferation rate of aging fibroblast cells is reduced compared to the pre-aging fibroblast cells. In this study, we confirmed that the replicative senescence dermal fibroblast cells increased the expression levels of MMP-1 and decreased the production of type I procollagen. Our results also showed that the replicative senescence dermal fibroblast cells increased in the expression of CCN1 and decreased in the proliferation rate. Hydrolyzed Ulva pertusa extracts are the materials to improve photo-aging by reducing the expression of MMP-1 that was increased by ultraviolet and by promoting the synthesis of new collagen from fibroblast cells. In this study, we also investigated the hydrolyzed U. pertusa extract to see whether it inhibits CCN1 protein expression in the senescence fibroblasts. Results showed that the hydrolyzed U. pertusa extract inhibited the expression of MMP-1 and increased the production of type I procollagen in the aging skin fibroblast cells cultured. In addition, the proteins that regulate collagen homeostasis CCN1 expression were greatly reduced. The hydrolyzed U. pertusa extract increased the proliferation rate of the aging fibroblast cells. These results suggest that replicative senescent fibroblast cells may be used in the study of cosmetic ingredients as a model of the natural aging. In conclusion, the hydrolyzed U. pertusa extract can be used in anti-wrinkle functional cosmetic material to improve the natural aging skin care as well as photo-aging.

피부 섬유아세포는 인간 피부의 주요 콜라겐 생산 세포이다. 노화가 진행되면, 섬유아세포에서의 콜라겐 생산이 감소되고, matrix metalloproteinase-1 (MMP-1)에 의해 시작되는 콜라겐 조각화가 증가된다. 즉 섬유아세포의 콜라겐 항상성의 불균형으로 인해 피부 collagenous, 세포외기질(ECM)의 구조와 기능이 변형되어, 피부노화가 촉진되는 것이다. Cysteine rich protein 61 (CCN1)는 CCN family의 일부이며, 인간피부의 섬유아세포에서 콜라겐 항상성을 조절하는 단백질이다. 노화된 인간 피부 섬유아세포에서의 CCN1 과 발현은 실질적으로 유형 I procollagen 생성을 감소시킴과 동시에 MMP-1의 발현을 증가시켜 섬유의 콜라겐 저하를 일으킨다. 그리고 노화된 섬유아세포는 노화 전 섬유아세포에 비해 증식률이 감소한다. 본 연구에서 만들어 사용한 복제 노화 피부 섬유아세포는 유형 I procollagen의 생성량이 감소하였고, MMP-1의 발현 수준이 증가하는 특징을 나타냈다. 또한 CCN1 단백질의 발현이 증가되고, 증식률이 감소하는 특징을 나타냈다. 가수분해 구멍갈파래 추출물은 노화 전 섬유아세포에서 새로운 콜라겐의 합성을 촉진하고 자외선에 의해 증가된 MP-1의 발현을 감소시켜 광노화를 개선하는 물질로 알려져 있다. 본 연구에서는 이러한 활성을 나타내는 가수분해 구멍갈파래 추출물을 사용하여, 복제 노화 피부 섬유아세포에서 가수분해 구멍갈파래 추출물에 의한 CN1 단백질의 발현 억제 여부를 조사하였으며, 이들 추출물은 배양된 복제 노화 피부 섬유아세포에서 유형 I procollagen의 생성을 증가시켰으며, MMP-1 발현을 억제시키는 것을 확인하였다. 또한, 콜라겐 항상성을 조절하는 단백질인 CN1 발현을 크게 감소시켰으며, 노화세포의 증식률을 증가시켰다. 이 결과는 복제 노화 섬유아세포가 in vitro 자연 노화모델로 화장품 원료 활성 연구에 사용될 수 있음을 말한다. 그리고 가수분해 구멍갈파래 추출물은 광노화 뿐 아니라 자연노화를 개선하는 피부미용제로 주름개선 기능성 화장품에 사용가능 하다는 것을 의미한다.

Keywords

References

  1. B. A. Gilchrest and Yaar M. Ageing, photoageing of the skin: observations and the cellular and molecular level, Br. J. Dermatol., 127, 25 (1992). https://doi.org/10.1111/j.1365-2133.1992.tb16984.x
  2. M. A. Farage, K. W. Miller, E. Berardesca, and H. I. Maibach, Clinical implications of aging skin: cuta neous disorders in the elderly, Review. Am J. Clin Dermatol., 10, 73 (2009). https://doi.org/10.2165/00128071-200910020-00001
  3. C. C. Chen, N. Chen, and L. F. Lau, The angiogenic factors Cyr61 and connective tissue growth factor induce adhesive signaling in primary human skin fibroblasts, J. Biol Chem., 276, 10443 (2001). https://doi.org/10.1074/jbc.M008087200
  4. M. L. Kireeva, F. E. Mo, G. P. Yang, and L. F. Lau, Cyr61, a product of a growth factor-inducible immediate- early gene, promotes cell proliferation, migration, and adhesion, Mol Cell Biol., 16, 1326 (1996). https://doi.org/10.1128/MCB.16.4.1326
  5. F. E. Mo, A. G. Muntean, C. C. Chen, D. B. Stolz, S. C. Watkins, and L. F. Lau, CYR61 (CCN1) is essential for placental development and vascular integrity, Mol Cell Biol., 22, 8709 (2002). https://doi.org/10.1128/MCB.22.24.8709-8720.2002
  6. T. Quan, Z. Qin, John J. Voorhees, and Gary J. Fisher., Cysteine-Rich Protein 61 (CCN1) Mediates Replicative Senescence-Associated Aberrant Collagen Homeostasis in Human Skin Fibroblasts, J. Cellular Biochemistry, 113, 3011 (2012). https://doi.org/10.1002/jcb.24179
  7. D. R. Brigstock, The CCN family: A new stimulus package, J. Endocrinol., 178, 169 (2003). https://doi.org/10.1677/joe.0.1780169
  8. M. D. West, The cellular and molecular biology of skin aging, Arch Dermatology, 130, 87(1994). https://doi.org/10.1001/archderm.1994.01690010091014
  9. P. H. Wul, S. K. Lin, B. S. Lee, S. H. Kok, J. H. Wang, K. L. Hou, H. Yang, J. S. Wang, and C. Y. Hong, Epigallocatechin-3-gallate diminishes cytokine-stimulated Cyr61 expression in human osteoblastic cells: a therapeutic potential for arthritis, Rheumatology, 51, 1953 (2012). https://doi.org/10.1093/rheumatology/kes174
  10. T. Quan, T. He, Y. Shao, L. Lin, S. Kang, J. J. Voorhees, and G. J. Fisher, Elevated cysteine-rich 61 mediates aberrant collagen homeostasis in chronologically aged and photoaged human skin, Am J. Pathol., 169, 482 (2006). https://doi.org/10.2353/ajpath.2006.060128
  11. T. Quan, Z. Qin, Y. Xu, T. He, S. Kang, J. J. Voorhees, and G. J. Fisher, Ultraviolet irradiation induces CYR61/CCN1, a mediator of collagen homeostasis, through activation of transcription factor AP-1 in human skin fibroblasts, J. Invest Dermatol., 130, 1697 (2010). https://doi.org/10.1038/jid.2010.29
  12. T. Quan, Z. Qin, P. Robichaud, J. J. Voorhees, and G. J. Fisher, CCN1 contributes to skin connective tissue aging by inducing age-associated secretory phenotype in human skin dermal fibroblasts, J. Cell Commun Signal, 5, 201 (2011). https://doi.org/10.1007/s12079-011-0144-0
  13. T. Quan, Z. Qin, Y. Shao, Y. Xu, J. J. Voorhees, and G. J. Fisher, Retinoids suppress cysteine-rich protein 61 (CCN1), a negative regulator of collagen homeostasis, in skin equivalent cultures and aged human skin in vivo, Exp Dermatol., 20, 572 (2011). https://doi.org/10.1111/j.1600-0625.2011.01278.x
  14. J. Varani, M. K. Dame, L. Rittie, S. E. Fligiel, S. Kang, G. J. Fisher, and J. J. Voorhees, Decreased collagen production in chronologically aged skin: Roles of age-dependent alteration in fibroblast function and defective mechanical stimulation, Am J. Pathol., 168, 1861 (2006). https://doi.org/10.2353/ajpath.2006.051302
  15. L. F. Lau and S. C. Lam, The CCN family of angiogenic regulators: The integrin connection, Exp. Cell Res., 248, 44 (1999). https://doi.org/10.1006/excr.1999.4456
  16. G. J. Fisher, S. Kang, J. Varani, Z. Bata-Csorgo, Y. Wan, S. Datta, and J. J. Voorhees, Mechanisms of photoaging and chronological skin aging, Arch Dermatol., 138, 1462 (2002).
  17. G. J. Fisher, Z. Q. Wang, S. C. Datta, J. Varani, S. Kang, and J. J. Voorhees, Pathophysiology of premature skin aging induced by ultraviolet light, N. Engl J. Med., 337, 1419 (1997). https://doi.org/10.1056/NEJM199711133372003
  18. S. E. Fligiel, J. Varani, S. C. Datta, S. Kang, G. J. Fisher, and J. J. Voorhees, Collagen degradation in aged/photodamaged skin in vivo and after exposure to matrix metalloproteinase-1, in vitro, J. Invest Dermatol., 120, 842 (2003). https://doi.org/10.1046/j.1523-1747.2003.12148.x
  19. D. R. Holt, S. J. Kirk, M. C. Regan, M. Hurson, W. J. Lindblad, and A. Barbul, Effect of age on wound healing in healthy human beings, Surgery., 112, 293 (1992).
  20. N. J. Raine-Fenning, M. P. Brincat, and Y. Muscat- Baron, Skin aging and menopause: Implications for treatment, Am J. Clin Dermatol., 4, 371 (2003). https://doi.org/10.2165/00128071-200304060-00001
  21. M. R. Khorramizadeh, E. E. Tredget, C. Telasky, Q. Shen, and A. Ghahary, Aging differentially modulates the expression of collagen and collagenase in dermal fibroblasts, Mol Cell Biochem., 194, 99 (1999). https://doi.org/10.1023/A:1006909021352
  22. T. Quan, T. He, S. Kang, J. J. Voorhees, and G. J. Fisher, Solar ultraviolet irradiation reduces collagen in photoaged human skin by blocking transforming growth factor-beta type II receptor/Smad signalin, Am J. Pathol., 165, 741 (2004). https://doi.org/10.1016/S0002-9440(10)63337-8

Cited by

  1. Phylogenetic Diversity and Community Analysis of Marine Bacteria Associated with Ulva pertusa vol.26, pp.7, 2016, https://doi.org/10.5352/JLS.2016.26.7.819
  2. Constituents of Collagen Synthesis Activation from the Extracts of Gynostemma pentaphyllum Leaves vol.40, pp.3, 2014, https://doi.org/10.15230/SCSK.2014.40.3.289