DOI QR코드

DOI QR Code

Estimation of Overall Heat Transfer Coefficient for Single Layer Covering in Greenhouse

일중 피복온실의 관류열전달계수 산정

  • Hwang, Young-Yun (Department of Agricultural Eng., Kyungpook National Univ.) ;
  • Lee, Jong-Won (Department of Agricultural Eng., Kyungpook National Univ.) ;
  • Lee, Hyun-Woo (Department of Agricultural Eng., Kyungpook National Univ.)
  • 황영윤 (경북대학교 농업토목공학과) ;
  • 이종원 (경북대학교 농업토목공학과) ;
  • 이현우 (경북대학교 농업토목공학과)
  • Received : 2013.04.30
  • Accepted : 2013.05.15
  • Published : 2013.06.30

Abstract

This study was conducted to suggest a model to calculate the overall heat transfer coefficient of single layer covering for various greenhouse conditions. There was a strong correlation between cover surface temperature and inside air temperature of greenhouse. The equations to calculate the convective and radiative heat transfer coefficients proposed by Kittas were best fitted for calculation of the overall heat transfer coefficient. Because the coefficient of linear regression between the calculated and measured cover surface temperature was founded to 0.98, the slope of the straight line is 1.009 and the intercept is 0.001, the calculation model of overall heat transfer coefficient proposed by this study is acceptable. The convective heat transfer between the inner cover surface and the inside air was greater than the radiative heat transfer, and the difference increased as the wind speed rose. The convective heat transfer between the outer cover surface and the outside air was less than the radiative heat transfer for the low wind speed, but greater than for the high wind speed. The outer cover convective heat flux increased proportion to the inner cover convective heat flux linearly. The overall heat transfer coefficient increased but the cover surface temperature decreased as the wind speed increased, and the regression function was founded to be logarithmic and power function, respectively.

본 연구의 목적은 일중피복온실의 피복재에 대하여 우리나라 환경에 적합한 관류열전달계수를 산정하는 방법을 찾아내고 검증하여 다양한 온실조건 및 환경조건에서 관류열전달계수를 산정할 수 있는 모델을 제시하는 것이다. 온실내부 및 외부온도와 피복재 표면온도와의 상관관계를 분석한 결과 주간 및 야간 온도를 모두 고려하였을 때보다 야간온도만을 고려하였을 경우가 상관성이 훨씬 더 높은 것으로 나타났다. 피복재의 표면온도가 온실의 외부온도보다는 내부온도와 상관성이 더 높은 것으로 나타났다. 관류열전달계수를 산정하는데 사용된 5가지 종류의 대류 및 복사열전달계수 산정식을 비교한 결과 Kittas가 제안한 대류 및 복사열전달계수 산정식이 가장 적합한 것으로 나타났다. 피복재 표면온도의 측정값과 계산 값의 상관성을 분석한 결과 직선의 기울기는 1.009이고 절편은 0.001이며 결정계수가 0.98로 나타나 본 연구에서 제시된 관류열전달계수 산정모델이 신뢰성이 있음을 확인할 수 있었다. 온실내부로부터 피복재 내부표면으로 전달되는 열흐름량의 경우 모든 풍속구간에 대해 대류열전달량이 복사열전달량보다 더 컸으며 풍속이 증가할수록 그 차이가 증가하였다. 외부표면에서 손실되는 열흐름량의 경우 풍속이 낮을 때에는 대류열전달량에 비해 복사열전달량이 더 컸으나 풍속이 증가함에 따라 그 차이는 점점 줄어들어 풍속이 높을 때에는 대류열전달량이 더 커지는 것으로 나타났다. 피복재 외부 표면의 대류열전달량은 내부표면의 대류열전달량에 직선적으로 비례하여 증가하는 것으로 나타났다. 풍속이 증가함에 따라 관류열전달계수는 증가하고 피복재의 표면 온도는 감소하는 것을 확인할 수 있었고, 변화추세를 보면 관류열전달계수는 거듭제곱함수와 그리고 표면온도는 로그함수와 잘 일치하였다.

Keywords

References

  1. Abdel-Ghany, A.M. and T. Kozai. 2006. On the determination of the overall heat transmission coefficient and soil heat flux for a cooled, naturally ventilated greenhouse: Analysis of radiation and convection heat transfer. Energy Conversion and Management 47:2612-2628. https://doi.org/10.1016/j.enconman.2005.10.024
  2. ASABE. 2008. Heating, ventilating and cooling greenhouses. ASABE Standards.
  3. Bailey, B.J. and Z.S. Chalabi. 1994. Improving the cost effectiveness of greenhouse climate control. Computers and Electronics in Agriculture 10:203-214. https://doi.org/10.1016/0168-1699(94)90041-8
  4. Baille, A., J.C. Lopez, S. Bonachela, M.M. Gonzalez-Real, J.I. Montero. 2006. Night energy balance in a heated low-cost plastic greenhouse. Agricultural and Forest Meteorology 137:107-118. https://doi.org/10.1016/j.agrformet.2006.03.008
  5. Duffie JA, Beckman WA (1981) Solar engineering of thermal processes. Wiley Interscience Publication, New York, USA. p. 122-123.
  6. Garzoli, K.V. and J. Blackwell. 1981. An analysis of the nocturnal heat loss from a single skin plastic greenhouse. J. Agric. Engng Res. 26:203-214. https://doi.org/10.1016/0021-8634(81)90105-0
  7. Lee, H.W., S. Diop, and Y.S. Kim. 2011. Variation of the overall heat transfer coefficient of plastic greenhouse covering material. Journal of Bio-Environment Control 20(2):72-77 (in Korean).
  8. Hanan, J.J. 1998. Greenhouses-Advanced technology for protected horticulture. CRC Press, Boca Raton, FL, USA. p.
  9. Japan Protected Horticulture Association. 1994. Handbook of protected horticulture. Japan Protected Horticulture Association. p. 170-173 (in Japanese).
  10. Kim, M.G., S.W. Nam, W.M. Suh, Y.C. Yoon, S.G. Lee, and H.W. Lee. 2000. Agricultural structural engineering. Hyangmunsa, Seoul, Korea. p. 87 (in Korean).
  11. Kimball, B.A. 1973. Simulation of the energy balance of a greenhouse. J.Agr. Met. 11: 243-260. https://doi.org/10.1016/0002-1571(73)90067-8
  12. Kittas, C. 1986. Greenhouse cover conductances. Boundary- Layer Meteorol. 36:213-225. https://doi.org/10.1007/BF00118660
  13. Kittas, C. 1994. Overall heat transfer coefficient of a greenhouse cover. Agricultural and Forest Meteorology 69:205- 221 (in French). https://doi.org/10.1016/0168-1923(94)90026-4
  14. Lee, H.W., S. Diop, and Y.S. Kim. 2011. Variation of the overall heat transfer coefficient of plastic greenhouse covering material. Journal of Bio-Environment Control 20(2):72-77(in Korean).
  15. Minagawa, H. and K. Tachibana. 1982. The overall heat transfer of greenhouses covered with PE and PVC single layer - The heat insulation efficiency of greenhouses and their covering materials (1). J. Agr. Met. 38(1):15-22 (in Japanese). https://doi.org/10.2480/agrmet.38.15
  16. Mistry of Food, Agriculture, Forestry, and Fisheries (MIFAFF). 2011. Status of vegetable production in South Korea (in Korean).
  17. Nijskens, J., J. Deltour, S. Coutisse, and A. Nissen. 1984. Heat transfer through covering materials of greenhouses. Agricultural and Forest Meteorology 33:193-214. https://doi.org/10.1016/0168-1923(84)90070-4
  18. Papadakis, G., D. Briassoulis, G.S. Mugnozza, G. Vox, P. Feuilloley, and J.A. Stoffers. 2000. Radiometric and thermal properties of, and testing methods for, greenhouse covering materials. J. Agric. Engng Res. 77(1):7-38. https://doi.org/10.1006/jaer.2000.0525
  19. Papadakis, G., A. Frangoudakis, and S. Kyritsis. 1992. Mixed, forced and free convection heat transfer at the greenhouse cover. J. Agric. Engng Res. 51:191-205. https://doi.org/10.1016/0021-8634(92)80037-S
  20. Seginer, I., D. Kantz, U.M. Peiper, and N. Levav. 1988. Transfer coefficients of several polyethlene greenhouse covers. J. Agric. Engng Res. 39:19-37. https://doi.org/10.1016/0021-8634(88)90163-1
  21. Swinbank, W. 1963. Long-wave radiation from clear skies. Quarterly Journal of Royal Meteorological Society 89:339-348 https://doi.org/10.1002/qj.49708938105