DOI QR코드

DOI QR Code

Alteration of Media Composition and Light Conditions Change Morphology, Metabolic Profile, and Beauvericin Biosynthesis in Cordyceps bassiana Mycelium

  • Received : 2012.08.27
  • Accepted : 2012.09.17
  • Published : 2013.01.28

Abstract

Metabolic alterations of Cordyceps bassiana mycelium were investigated under the following culture medium and light conditions: dextrose agar supplemented with 0.5% yeast extract (SDAY) medium with light (SL), SDAY medium without light (SD), nut medium without light (ND), and iron-supplemented SDAY medium without light (FD). The levels of asparagine, aspartic acid, glutamic acid, glutamine, histidine, lysine, ornithine, and proline were significantly higher under SD and SL conditions. The levels of most of the alcohols, saturated fatty acids, unsaturated fatty acids, fatty acid esters, sterols, and terpenes were higher under the ND condition than in the other conditions, but beauvericin was not detectable under the ND condition. The FD condition was favorable for the enhanced production of aminomalonic acid, malic acid, mannonic acid, and erythritol. Thus, the metabolic characteristics of C. bassiana can be manipulated by varying the cultivation conditions, rendering this fungus potentially favorable as a nutraceutical and medicinal resource.

Keywords

References

  1. Bayram, O., S. Krappmann, M. Ni, J. W. Bok, K. Helmstaedt, O. Valerius, et al. 2008. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320: 1504-1506. https://doi.org/10.1126/science.1155888
  2. Bok, J. W., L. Lermer, J. Chilton, H. G. Klingeman, and G. Towers. 1999. Antitumor sterols from the mycelia of Cordyceps sinensis. Phytochemistry 51: 891-898. https://doi.org/10.1016/S0031-9422(99)00128-4
  3. Byeon, S. E., J. Lee, B. C. Yoo, G. H. Sung, T. W. Kim, H. J. Park, and J. Y. Cho. 2011. p38-Targeted inhibition of interleukin-12 expression by ethanol extract from Cordyceps bassiana in lipopolysaccharide-activated macrophages. Immunopharmacol. Immunotoxicol. 33: 90-96.
  4. Byeon, S. E., S. Y. Lee, A. R. Kim, J. Lee, G. H. Sung, H. J. Jang, et al. 2011. Inhibition of cytokine expression by a butanol extract from Cordyceps bassiana. Pharmazie 66: 58-62.
  5. Carr, S. A., E. Block, C. E. Costello, R. F. Vesonder, and H. Burmeister. 1985. Structure determination of a new cyclodepsipeptide antibiotic from fusaria fungi. J. Org. Chem. 50: 2854-2858. https://doi.org/10.1021/jo00216a008
  6. Erisson, L., E. Johansson, N. Kettaneh-Wold, J. Trygg, C. Wikstrom, and S. Wold. 2006. Multi- and Megavariate Data Analysis, Part I. Basic Principles and Applications. Umetrics Academy Umea, Umea, Sweden.
  7. Eyal, J., M. A. Mabud, K. Fischbein, J. Walter, L. Osborne, and Z. Landa. 1994. Assessment of Beauveria bassiana Nov. EO-1 strain, which produces a red pigment for microbial control. Appl. Biochem. Biotechnol. 44: 65-80.
  8. Grove, J. F. and M. Pople. 1980. The insecticidal activity of beauvericin and the enniatin complex. Mycopathologia 70: 103-105. https://doi.org/10.1007/BF00443075
  9. Huang, B., C. Li, Z. Li, M. Fan, and Z. Li. 2002. Molecular identification of the teleomorph of Beauveria bassiana. Mycotaxon 81: 229-236.
  10. Jestoi, M., M. Rokka, A. Rizzo, K. Peltonen, and S. Aurasaari. 2005. Determination of Fusarium-mycotoxins beauvericin and enniatins with liquid chromatography-tandem mass spectrometry (LC-MS/MS). J. Liq. Chromatogr. Rel. Technol. 28: 369-381. https://doi.org/10.1081/JLC-200044513
  11. Jow, G. M., C. J. Chou, B. F. Chen, and J. H. Tsai. 2004. Beauvericin induces cytotoxic effects in human acute lymphoblastic leukemia cells through cytochrome c release, caspase 3 activation: The causative role of calcium. Cancer Lett. 216: 165-173. https://doi.org/10.1016/j.canlet.2004.06.005
  12. Jung, W. H., A. Sham, R. White, and J. W. Kronstad. 2006. Iron regulation of the major virulence factors in the AIDSassociated pathogen Cryptococcus neoformans. PLoS Biol. 4: 2282-2295.
  13. Kirkland, B. H., G. S. Westwood, and N. O. Keyhani. 2004. Pathogenicity of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae to Ixodidae tick species Dermacentor variabilis, Rhipicephalus sanguineus, and Ixodes scapularis. J. Med. Entomol. 41: 705-711. https://doi.org/10.1603/0022-2585-41.4.705
  14. Korea Food and Drug Administration. 2012. http:// fse.foodnara.go.kr/origin/search_ok.jsp. Accessed on April, 15.
  15. Leathers, T. D., S. C. Gupta, and N. J. Alexander. 1993. Mycopesticides: Status, challenges and potential. J. Ind. Microbiol. Biotechnol. 12: 69-75.
  16. Lee, J. O., B. Shrestha, T. W. Kim, G. H. Sung, and J. M. Sung. 2007. Stable formation of fruiting body in Cordyceps bassiana. Mycobiology 35: 230-234. https://doi.org/10.4489/MYCO.2007.35.4.230
  17. Li, S., G. Zhang, Q. Zeng, Z. Huang, Y. Wang, T. Dong, and K. Tsim. 2006. Hypoglycemic activity of polysaccharide, with antioxidation, isolated from cultured Cordyceps mycelia. Phytomedicine 13: 428-433. https://doi.org/10.1016/j.phymed.2005.02.002
  18. Li, Z., C. Li, B. Huang, and M. Fan. 2001. Discovery and demonstration of the teleomorph of Beauveria bassiana (Bals.) Vuill., an important entomogenous fungus. Chinese Sci. Bull. 46: 751-753. https://doi.org/10.1007/BF03187215
  19. Lo, H. C., S. T. Tu, K. C. Lin, and S. C. Lin. 2004. The antihyperglycemic activity of the fruiting body of Cordyceps in diabetic rats induced by nicotinamide and streptozotocin. Life Sci. 74: 2897-2908. https://doi.org/10.1016/j.lfs.2003.11.003
  20. Quesada-Moraga, E. and A. Vey. 2004. Bassiacridin, a protein toxic for locusts secreted by the entomopathogenic fungus Beauveria bassiana. Mycol. Res. 108: 441-452. https://doi.org/10.1017/S0953756204009724
  21. Shrestha, B., W. H. Lee, S. K. Han, and J. M. Sung. 2006. Observations on some of the mycelial growth and pigmentation characteristics of Cordyceps militaris isolates. Mycobiology 34: 83-91. https://doi.org/10.4489/MYCO.2006.34.2.083
  22. Sørensen, J. L., K. F. Nielsen, P. H. Rasmussen, and U. Thrane. 2008. Development of a LC-MS/MS method for the analysis of enniatins and beauvericin in whole fresh and ensiled maize. J. Agric. Food Chem. 56: 10439-10443. https://doi.org/10.1021/jf802038b
  23. Strasser, H., A. Vey, and T. M. Butt. 2000. Are there any risks in using entomopathogenic fungi for pest control, with particular reference to the bioactive metabolites of Metarhizium, Tolypocladium and Beauveria species? Biocontrol Sci. Technol. 10: 717-735. https://doi.org/10.1080/09583150020011690
  24. Styczynski, M. P., J. F. Moxley, L. V. Tong, J. L. Walther, K. L. Jensen, and G. N. Stephanopoulos. 2007. Systematic identification of conserved metabolites in GC/MS data for metabolomics and biomarker discovery. Anal. Chem. 79: 966-973. https://doi.org/10.1021/ac0614846
  25. Sung, J. M., J. O. Lee, R. A. Humber, G. H. Sung, and B. Shrestha. 2006. Cordyceps bassiana and production of stromata in vitro showing Beauveria anamorph in Korea. Mycobiology 34: 1-6. https://doi.org/10.4489/MYCO.2006.34.1.001
  26. Van Aarle, I. M. and P. A. Olsson. 2003. Fungal lipid accumulation and development of mycelial structures by two arbuscular mycorrhizal fungi. Appl. Environ. Microbiol. 69: 6762-6767. https://doi.org/10.1128/AEM.69.11.6762-6767.2003
  27. Vey, A., R. E. Hoagland, and T. M. Butt. 2001. Toxic metabolites of fungal biocontrol agents, pp. 311-346. In T. M. Butt, C. Jackson, and N. Magan (eds.). Fungi as Biocontrol Agents: Progress Problems and Potential. CABI, Oxford, UK.
  28. Wang, B. J., S. J. Won, Z. R. Yu, and C. L. Su. 2005. Free radical scavenging and apoptotic effects of Cordyceps sinensis fractionated by supercritical carbon dioxide. Food Chem. Toxicol. 43: 543-552. https://doi.org/10.1016/j.fct.2004.12.008
  29. Yang, F. C., Y. F. Ke, and S. S. Kuo. 2000. Effect of fatty acids on the mycelial growth and polysaccharide formation by Ganoderma lucidum in shake flask cultures. Enzyme Microb. Technol. 27: 295-301. https://doi.org/10.1016/S0141-0229(00)00213-1

Cited by

  1. Stress tolerance and virulence of insect-pathogenic fungi are determined by environmental conditions during conidial formation vol.61, pp.3, 2013, https://doi.org/10.1007/s00294-015-0477-y
  2. Chemical Constituents Identified from Fruit Body of Cordyceps bassiana and Their Anti-Inflammatory Activity vol.25, pp.2, 2013, https://doi.org/10.4062/biomolther.2016.063
  3. Metabolomic profile and nucleoside composition of Cordyceps nidus sp. nov. (Cordycipitaceae): A new source of active compounds vol.12, pp.6, 2017, https://doi.org/10.1371/journal.pone.0179428
  4. Comparative Analysis of the Biological Activity and Chromatographic Profiles of the Extracts of Beauveria bassiana and B. pseudobassiana Cultures Grown on Different Nutrient Substrates vol.87, pp.2, 2013, https://doi.org/10.1134/s0026261718020030
  5. Outcome of blue, green, red, and white light on Metarhizium robertsii during mycelial growth on conidial stress tolerance and gene expression vol.124, pp.5, 2013, https://doi.org/10.1016/j.funbio.2019.04.007
  6. Colonization of Beauveria bassiana 08F04 in root-zone soil and its biocontrol of cereal cyst nematode ( Heterodera filipjevi ) vol.15, pp.5, 2013, https://doi.org/10.1371/journal.pone.0232770
  7. The Chemical Ecology Approach to Reveal Fungal Metabolites for Arthropod Pest Management vol.9, pp.7, 2013, https://doi.org/10.3390/microorganisms9071379