DOI QR코드

DOI QR Code

Overexpression and Characterization of Lycopene Cyclase (CrtY) from Marine Bacterium Paracoccus haeundaensis

  • Jeong, Tae Hyug (Department of Microbiology, Pukyong National University) ;
  • Ji, Keunho (Department of Microbiology, Pukyong National University) ;
  • Kim, Young Tae (Department of Microbiology, Pukyong National University)
  • Received : 2012.08.27
  • Accepted : 2012.10.02
  • Published : 2013.02.28

Abstract

Lycopene cyclase converts lycopene to ${\beta}$-carotene by catalyzing the formation of two beta-rings at each end of the linear carotene structure. This reaction takes place as a two-step reaction in which both sides of of the lycopene molecule are cyclized into ${\beta}$-carotene rings via the monocyclic ${\gamma}$-carotene as an intermediate. The crtY gene coding for lycopene cyclase from Paracoccus haeundaensis consists of 1,158 base pairs encoding 386 amino acids residues. An expression plasmid containing the crtY gene (pET44a-CrtY) was constructed and expressed in Escherichia coli, and produced a recombinant protein of approximately 43 kDa, corresponding to the molecular mass of lycopene cyclase. The expressed protein was purified to homogeneity by His-tag affinity chromatography and showed enzymatic activity corresponding to lycopene cyclase. We also determined the lycopene substrate specificity and NADPH cofactor requirements of the purified protein. The $K_m$ values for lycopene and NADPH were 3.5 ${\mu}M$ and 2 mM, respectively. The results obtained from this study will provide a wider base of knowledge on the enzyme characterization of lycopene cyclase at the molecular level.

Keywords

References

  1. Akyon, Y. 2002. Effect of antioxidants on the immune response of Helicobacter pylori. Clin. Microbiol. Infect. 8: 438-441. https://doi.org/10.1046/j.1469-0691.2002.00426.x
  2. Amar, Y., V. Kiron, S. Satoh, and T. Watanabe. 2004. Enhancement of innate immunity in rainbow trout (Oncorhynchus mykiss Walbaum) associated with dietary intake of carotenoids from natural products. Fish Shellfish Immunol. 16: 527-537. https://doi.org/10.1016/j.fsi.2003.09.004
  3. Bertran, J. S. 1999. Carotenoids and gene regulation. Nutr. Rev. 57: 182-191.
  4. Bhupinder, S. H., A. O. David, B. Peter, K. Hans, and E. H. John. 1993. In vitro expression and activity of lycopene cyclase and $\beta$-carotene hydroxylase from Erwinia herbicola. FEBS Lett. 315: 329-334. https://doi.org/10.1016/0014-5793(93)81188-6
  5. Chemler, J. A., Y. Yan, and M. A. Koffas. 2006. Biosynthesis of isoprenoids, polyunsaturated fatty acids and flavonoids in Saccharomyces cerevisiae. Microb. Cell Fact. 23: 5-20.
  6. Edge, R., D. J. Garvey, and T. G. Truscott. 1997. The carotenoids as anti-oxidants: A review. J. Photochem. Photobiol. 41: 189-200. https://doi.org/10.1016/S1011-1344(97)00092-4
  7. Francis, X. C., S. Zairen, C. Daniel, H. Joseph, and G. Elisabeth. 1994. Molecular structure and enzymatic function of lycopene cyclase from the cyanobacterium Synechococcus sp Strain PCC7942. Am. Soc. Plant Physiol. 6: 1107-1121.
  8. Haila, K. M., B. R. Nielsen, M. I. Heininen, and L. H. Skibsted. 1997. Carotenoid reaction with free radicals in acetone and toluene at different oxygen partial pressures. An ESR spintrapping study of structure-activity relationships. Z. Lebensm. Unters. Forsch. 204: 81-87. https://doi.org/10.1007/s002170050041
  9. Harker, M., J. Hirschberg, and A. Oren. 1998. Paracoccus marcusii sp. nov., an orange Gram-negative coccus. Int. J. Syst. Bacteriol. 48: 543-548. https://doi.org/10.1099/00207713-48-2-543
  10. Jorgensen, K. and L. H. Skibsted. 1993. Carotenoid scavenging of radicals. Effect of carotenoid structure and oxygen partial pressure on antioxidative activity. Z. Lebensm. Unters. Forsch. 196: 423-429. https://doi.org/10.1007/BF01190806
  11. Jyonouchi, H., L. Ahang, M. Cross, and T. Tomita. 1994. Immunomodulating actions of carotenoids: Enhancement of in vivo and in vitro antibody production to T-dependent antigens. Nutr. Cancer 21: 47-58. https://doi.org/10.1080/01635589409514303
  12. Lee, J. H., Y. S. Kim, T. J. Choi, W. J. Lee, and Y. T. Kim. 2004. Paracoccus haeundaensis sp. nov., a Gram-negative, halophilic, astaxanthin-producing bacterium. Int. J. Syst. Evol. Microbiol. 54: 1699-1702. https://doi.org/10.1099/ijs.0.63146-0
  13. Lee, J. H. and Y. T. Kim. 2006. Cloning and characterization of the astaxanthin biosynthesis gene cluster from the marine bacterium Paracoccus haeundaensis. Gene 370: 86-95. https://doi.org/10.1016/j.gene.2005.11.007
  14. Lee, J. H. and Y. T. Kim. 2006. Functional expression of the astaxanthin biosynthesis genes from a marine bacterium, Paracoccus haeundaensis. Biotechnol. Lett. 28: 1167-1173. https://doi.org/10.1007/s10529-006-9072-0
  15. Yokoyama, A., H. Izumida, and W. Miki. 1994. Production of astaxanthim and 4-ketozeaxanthin by the marine bacterium, Agrobacterium aurantiacum. Biosci. Biotechnol. Biochem. 58: 1842-1844. https://doi.org/10.1271/bbb.58.1842

Cited by

  1. Cloning and Characterization of D-xylulose Kinase from Kocuria gwangalliensis Strain SJ2 vol.25, pp.5, 2013, https://doi.org/10.5352/jls.2015.25.5.507
  2. Enhanced Production of Astaxanthin by Metabolically Engineered Non-mevalonate Pathway in Escherichia coli vol.46, pp.2, 2018, https://doi.org/10.4014/mbl.1801.01007
  3. Molecular Cloning and Overexpression of Phytoene Desaturase (CrtI) from Paracoccus haeundaensis vol.46, pp.2, 2013, https://doi.org/10.4014/mbl.1802.02013
  4. Biotechnological Advances in Lycopene β-Cyclases vol.68, pp.43, 2013, https://doi.org/10.1021/acs.jafc.0c04814