DOI QR코드

DOI QR Code

Correlation Between Sorangium cellulosum Subgroups and Their Potential for Secondary Metabolite Production

  • Lee, Chayul (Myxobacteria Bank, Department of Biotechnology, Hoseo University) ;
  • An, Dongju (Myxobacteria Bank, Department of Biotechnology, Hoseo University) ;
  • Lee, Hanbit (Myxobacteria Bank, Department of Biotechnology, Hoseo University) ;
  • Cho, Kyungyun (Myxobacteria Bank, Department of Biotechnology, Hoseo University)
  • Received : 2012.10.18
  • Accepted : 2012.11.16
  • Published : 2013.03.28

Abstract

Phylogenetic analysis of the groEL1 and xynB1 gene sequences from Sorangium cellulosum strains isolated in Korea previously revealed the existence of at least 5 subgroups (A-E). In the present study, we used sequence analysis of polymerase chain reaction-amplified biosynthetic genes of strains from the 5 subgroups to indicate correlations between S. cellulosum subgroups and their secondary metabolic gene categories. We detected putative biosynthetic genes for disorazol, epothilone, ambruticin, and soraphen in group A, group C, group D, and group E strains, respectively. With the exception of KYC3204, culture extracts from group A, group B, and group C strains exhibited no noticeable antimicrobial inhibitory activities. By contrast, culture extracts from group D strains inhibited the growth of Candida albicans, whereas culture extracts from group E strains inhibited the growth of C. albicans and Staphylococcus aureus. High performance liquid chromatography analysis of the culture extracts from the strains of each subgroup revealed unique peak patterns. Our findings indicate the existence of at least 5 subgroups of S. cellulosum strains, each of which has the potential to produce a unique set of secondary metabolites.

Keywords

References

  1. Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410.
  2. Buntin, K., H. Irschik, K. J. Weissman, E. Luxenburger, H. Blocker, and R. Müller. 2010. Biosynthesis of thuggacins in myxobacteria: Comparative cluster analysis reveals basis for natural product structural diversity. Chem. Biol. 17: 342-356. https://doi.org/10.1016/j.chembiol.2010.02.013
  3. Frank, B., J. Knauber, H. Steinmetz, M. Scharfe, H. Blocker, S. Beyer, and R. Müller. 2007. Spiroketal polyketide formation in Sorangium: Identification and analysis of the biosynthetic gene cluster for the highly cytotoxic spirangienes. Chem. Biol. 14: 221-233. https://doi.org/10.1016/j.chembiol.2006.11.013
  4. Gerth, K., S. Pradella, O. Perlova, S. Beyer, and R. Müller. 2003. Myxobacteria: Proficient producers of novel natural products with various biological activities - past and future biotechnological aspects with the focus on the genus Sorangium. J. Biotechnol. 106: 233-253. https://doi.org/10.1016/j.jbiotec.2003.07.015
  5. Hyun, H., J. Chung, H. Lee, J. Youn, C. Lee, D. Kim, and K. Cho. 2009. Isolation of cellulose-degrading myxobacteria Sorangium cellulosum. Korean J. Microbiol. 45: 48-53.
  6. Hyun, H., J. Chung, J. Kim, J.-S. Lee, B.-M. Kwon, K.-H. Son, and K. Cho. 2008. Isolation of Sorangium cellulosum carrying epothilone gene clusters. 2008. J. Microbiol. Biotechnol. 18: 1416-1422.
  7. Hyun, H., J. Youn, and K. Cho. 2011. Conservation of the epothilone-biosynthetic genes in Sorangium cellulosum strains. Korean J. Microbiol. 47: 170-173.
  8. Irschik, H., M. Kopp, K. J. Weissman, K. Buntin, J. Piel, and R. Muller. 2010. Analysis of the sorangicin gene cluster reinforces the utility of a combined phylogenetic/retrobiosynthetic analysis for deciphering natural product assembly by trans-AT PKS. Chembiochem 11: 1840-1849. https://doi.org/10.1002/cbic.201000313
  9. Jiang, D. M., L. Zhao, C. Y. Zhang, J. Li, Z. J. Xia, J. Wang, et al. 2008. Taxonomic analysis of Sorangium strains based on HSP60 and 16S rRNA gene sequences and morphology. Int. J. Syst. Evol. Microbiol. 58: 2654-2659. https://doi.org/10.1099/ijs.0.65806-0
  10. Julien, B., Z. Q. Tian, R. Reid, and C. D. Reeves. 2006. Analysis of the ambruticin and jerangolid gene clusters of Sorangium cellulosum reveals unusual mechanisms of polyketide biosynthesis. Chem. Biol. 13: 1277-1286. https://doi.org/10.1016/j.chembiol.2006.10.004
  11. Kopp, M., H. Irschik, K. Gemperlein, K. Buntin, P. Meiser, K. J. Weissman, et al. 2011. Insights into the complex biosynthesis of the leupyrrins in Sorangium cellulosum So ce690. Mol. Biosyst. 7: 1549-1563. https://doi.org/10.1039/c0mb00240b
  12. Kopp, M., H. Irschik, S. Pradella, and R. Müller. 2005. Production of the tubulin destabilizer disorazol in Sorangium cellulosum: Biosynthetic machinery and regulatory genes. Chembiochem 6: 1277-1286. https://doi.org/10.1002/cbic.200400459
  13. Larkin, M. A., G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, H. McWilliam, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. https://doi.org/10.1093/bioinformatics/btm404
  14. Lee, C., H. Hyun, and K. Cho. 2009. Isolation of myxobacteria carrying soraphen biosynthetic gene cluster. Korean J. Microbiol. Biotechnol. 37: 10-16.
  15. Lee, H., J. Youn, and K. Cho. 2011. Phylogenetic analysis of Sorangium cellulosum strains based on cellulase gene sequences. Korean J. Microbiol. Biotechnol. 39: 20-28.
  16. Ligon, J., S. Hill, J. Beck, R. Zirkle, I. Molnár, J. Zawodny, et al. 2002. Characterization of the biosynthetic gene cluster for the antifungal polyketide soraphen A from Sorangium cellulosum So ce26. Gene 285: 257-267. https://doi.org/10.1016/S0378-1119(02)00396-7
  17. Molnár, I., T. Schupp, M. Ono, R. Zirkle, M. Milnamow, B. Nowak-Thompson, et al. 2000. The biosynthetic gene cluster for the microtubule-stabilizing agents epothilones A and B from Sorangium cellulosum So ce90. Chem. Biol. 7: 97-109. https://doi.org/10.1016/S1074-5521(00)00075-2
  18. Page, R. D. 1996. TreeView: An application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12: 357-358.
  19. Schneiker, S., O. Perlova, O. Kaiser, K. Gerth, A. Alici, M. O. Altmeyer, et al. 2007. Complete genome sequence of the myxobacterium Sorangium cellulosum. Nat. Biotechnol. 25: 1281-1289. https://doi.org/10.1038/nbt1354
  20. Weissman, K. J. and R. Müller. 2009. A brief tour of myxobacterial secondary metabolism. Bioorg. Med. Chem. 17: 2121-2136. https://doi.org/10.1016/j.bmc.2008.11.025
  21. Wenzel, S. C. and R. Müller. 2009. Myxobacteria - 'microbial factories' for the production of bioactive secondary metabolites. Mol. BioSyst. 5: 567-574. https://doi.org/10.1039/b901287g

Cited by

  1. Selection and a 3-Year Field Trial of Sorangium cellulosum KYC 3262 Against Anthracnose in Hot Pepper vol.30, pp.3, 2013, https://doi.org/10.5423/ppj.oa.01.2014.0002
  2. Genetic engineering and heterologous expression of the disorazol biosynthetic gene cluster via Red/ET recombineering vol.6, pp.None, 2016, https://doi.org/10.1038/srep21066
  3. Isolation of Coralmycins A and B, Potent Anti-Gram Negative Compounds from the Myxobacteria Corallococcus coralloides M23 vol.79, pp.9, 2016, https://doi.org/10.1021/acs.jnatprod.6b00294
  4. Botrytis cinerea와 Colletotrichum acutatum에 항균활성을 갖는 점액세균 Sorangium cellulosum에 대한 아종 분류 및 길항 특성 연구 vol.24, pp.3, 2013, https://doi.org/10.5423/rpd.2018.24.3.213
  5. A polyphasic approach leads to seven new species of the cellulose-decomposing genus Sorangium, Sorangium ambruticinum sp. nov., Sorangium arenae sp. nov., Sorangium bulgaricum sp. nov., Sorangium dawi vol.68, pp.11, 2018, https://doi.org/10.1099/ijsem.0.003034