DOI QR코드

DOI QR Code

Glyceraldehyde-3-Phosphate Dehydrogenase, an Immunogenic Streptococcus equi ssp. zooepidemicus Adhesion Protein and Protective Antigen

  • Fu, Qiang (State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University) ;
  • Wei, Zigong (State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University) ;
  • Liu, Xiaohong (State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University) ;
  • Xiao, Pingping (State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University) ;
  • Lu, Zhaohui (State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University) ;
  • Chen, Yaosheng (State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University)
  • Received : 2012.09.12
  • Accepted : 2012.12.02
  • Published : 2013.04.28

Abstract

Streptococcus equi ssp. zooepidemicus (Streptococcus zooepidemicus, SEZ) is an important pathogen associated with opportunistic infections of a wide range of species, including pigs and humans. The absence of a suitable vaccine makes it difficult to control SEZ infection. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been previously identified as an immunogenic protein using immunoproteomic techniques. In the present study, we confirmed that the sequence of GAPDH was highly conserved with other Streptococcus spp. The purified recombinant GAPDH could elicit a significant humoral antibody response in mice and confer significant protection against challenge with a lethal dose of SEZ. GAPDH could adhere to the Hep-2 cells, confirmed by flow cytometry, and inhibit adherence of SEZ to Hep-2 cells in an adherence inhibition assay. In addition, real-time PCR demonstrated that GAPDH was induced in vivo following infection of mice with SEZ. These suggest that GAPDH could play an important role in the pathogenesis of SEZ infection and could be a target for vaccination against SEZ.

Keywords

References

  1. Alvarez, R. A., M. W. Blaylock, and J. B. Baseman. 2003. Surface localized glyceraldehyde-3-phosphate dehydrogenase of Mycoplasma genitalium binds mucin. Mol. Microbiol. 48: 1417-1425. https://doi.org/10.1046/j.1365-2958.2003.03518.x
  2. Beres, S. B., R. Sesso, S. W. Pinto, N. P. Hoe, S. F. Porcella, F. R. Deleo, and J. M. Musser. 2008. Genome sequence of a Lancefield group C Streptococcus zooepidemicus strain causing epidemic nephritis: New information about an old disease. PLoS One 3: e3026. https://doi.org/10.1371/journal.pone.0003026
  3. Bergmann, S., M. Rohde, and S. Hammerschmidt. 2004. Glyceraldehyde-3-phosphate dehydrogenase of Streptococcus pneumoniae is a surface-displayed plasminogen-binding protein. Infect. Immun. 72: 2416-2419. https://doi.org/10.1128/IAI.72.4.2416-2419.2004
  4. Blum, S., D. Elad, N. Zukin, I. Lysnyansky, L. Weisblith, S. Perl, O. Netanel, and D. David. 2010. Outbreak of Streptococcus equi subsp. zooepidemicus infections in cats. Vet. Microbiol. 144: 236-239. https://doi.org/10.1016/j.vetmic.2009.12.040
  5. Brassard, J., M. Gottschalk, and S. Quessy. 2004. Cloning and purification of the Streptococcus suis serotype 2 glyceraldehyde- 3-phosphate dehydrogenase and its involvement as an adhesin. Vet. Microbiol. 102: 87-94. https://doi.org/10.1016/j.vetmic.2004.05.008
  6. Causey, R. C., S. C. Artiushin, I. F. Crowley, J. A. Weber, A. D. Homola, A. Kelley, et al. 2010. Immunisation of the equine uterus against Streptococcus equi subspecies zooepidemicus using an intranasal attenuated Salmonella vector. Vet. J. 184: 156-161. https://doi.org/10.1016/j.tvjl.2009.05.001
  7. Egea, L., L. Aguilera, R. Gimenez, M. A. Sorolla, J. Aguilar, J. Badia, and L. Baldoma. 2007. Role of secreted glyceraldehyde- 3-phosphate dehydrogenase in the infection mechanism of enterohemorrhagic and enteropathogenic Escherichia coli: Interaction of the extracellular enzyme with human plasminogen and fibrinogen. Int. J. Biochem. Cell Biol. 39: 1190-1203. https://doi.org/10.1016/j.biocel.2007.03.008
  8. Feng, Z. and J. S. Zhang. 1977. Outbreak of swine streptococcosis in Sichan province and identification of pathogen. Anim. Husbandry Vet. Med. Lett. 2: 7-12.
  9. Hong-Jie, F., T. Fu-yu, M. Ying, and L. Cheng-ping. 2009. Virulence and antigenicity of the szp-gene deleted Streptococcus equi ssp. zooepidemicus mutant in mice. Vaccine 27: 56-61. https://doi.org/10.1016/j.vaccine.2008.10.037
  10. Jin, H., Y. P. Song, G. Boel, J. Kochar, and V. Pancholi. 2005. Group A streptococcal surface GAPDH, SDH, recognizes uPAR/CD87 as its receptor on the human pharyngeal cell and mediates bacterial adherence to host cells. J. Mol. Biol. 350: 27-41. https://doi.org/10.1016/j.jmb.2005.04.063
  11. Las Heras, A., A. I. Vela, E. Fernandez, E. Legaz, L. Dominguez, and J. F. Fernandez-Garayzabal. 2002. Unusual outbreak of clinical mastitis in dairy sheep caused by Streptococcus equi subsp. zooepidemicus. J. Clin. Microbiol. 40: 1106-1108. https://doi.org/10.1128/JCM.40.3.1106-1108.2002
  12. Lin, H. X., D. Y. Huang, Y. Wang, C. P. Lu, and H. J. Fan. 2011. A novel vaccine against Streptococcus equi ssp. zooepidemicus infections: The recombinant swinepox virus expressing M-like protein. Vaccine 29: 7027-7034. https://doi.org/10.1016/j.vaccine.2011.07.074
  13. Liu, L., G. Cheng, C. Wang, X. Pan, Y. Cong, Q. Pan, et al. 2009. Identification and experimental verification of protective antigens against Streptococcus suis serotype 2 based on genome sequence analysis. Curr. Microbiol. 58: 11-17. https://doi.org/10.1007/s00284-008-9258-x
  14. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262
  15. Mao, Y., H. Fan, and C. Lu. 2008. Immunoproteomic assay of extracellular proteins in Streptococcus equi ssp. zooepidemicus. FEMS Microbiol. Lett. 286: 103-109. https://doi.org/10.1111/j.1574-6968.2008.01259.x
  16. Meehan, M., P. Nowlan, and P. Owen. 1998. Affinity purification and characterization of a fibrinogen-binding protein complex which protects mice against lethal challenge with Streptococcus equi subsp. equi. Microbiology 144: 993-1003. https://doi.org/10.1099/00221287-144-4-993
  17. Minces, L. R., P. J. Brown, and P. J. Veldkamp. 2011. Human meningitis from Streptococcus equi subsp. zooepidemicus acquired as zoonoses. Epidemiol. Infect. 139: 406-410. https://doi.org/10.1017/S0950268810001184
  18. Ogunniyi, A. D., P. Giammarinaro, and J. C. Paton. 2002. The genes encoding virulence-associated proteins and the capsule of Streptococcus pneumoniae are upregulated and differentially expressed in vivo. Microbiology 148: 2045-2053.
  19. Pancholi, V. and G. S. Chhatwal. 2003. Housekeeping enzymes as virulence factors for pathogens. Int. J. Med. Microbiol. 293: 391-401. https://doi.org/10.1078/1438-4221-00283
  20. Priestnall, S. and K. Erles. 2011. Streptococcus zooepidemicus: An emerging canine pathogen. Vet. J. 188: 142-148. https://doi.org/10.1016/j.tvjl.2010.04.028
  21. Rubinsztein-Dunlop, S., B. Guy, L. Lissolo, and H. Fischer. 2005. Identification of two new Helicobacter pylori surface proteins involved in attachment to epithelial cell lines. J. Med. Microbiol. 54: 427-434. https://doi.org/10.1099/jmm.0.45921-0
  22. Sethman, C. R., R. J. Doyle, and M. M. Cowan. 2002. Flow cytometric evaluation of adhesion of Streptococcus pyogenes to epithelial cells. J. Microbiol. Methods 51: 35-42. https://doi.org/10.1016/S0167-7012(02)00054-4
  23. Timoney, J. F., S. C. Artiushin, and J. S. Boschwitz. 1997. Comparison of the sequences and functions of Streptococcus equi M-like proteins SeM and SzPSe. Infect. Immun. 65: 3600- 3605.
  24. Tunio, S. A., N. J. Oldfield, D. A. Ala'Aldeen, K. G. Wooldridge, and D. P. Turner. 2010. The role of glyceraldehyde 3-phosphate dehydrogenase (GapA-1) in Neisseria meningitidis adherence to human cells. BMC Microbiol. 10: 280. https://doi.org/10.1186/1471-2180-10-280
  25. Walker, J. A. and J. F. Timoney. 1998. Molecular basis of variation in protective SzP proteins of Streptococcus zooepidemicus. Am. J. Vet. Res. 59: 1129-1133.
  26. Wei, Z., Q. Fu, X. Liu, P. Xiao, Z. Lu, and Y. Chen. 2012. Identification of Streptococcus equi ssp. zooepidemicus surface associated proteins by enzymatic shaving. Vet. Microbiol. 159: 519-525. https://doi.org/10.1016/j.vetmic.2012.04.031
  27. Zhao, Y., Q. Liu, X. Wang, L. Zhou, Q. Wang, and Y. Zhang. 2011. Surface display of Aeromonas hydrophila GAPDH in attenuated Vibrio anguillarum to develop a novel multivalent vector vaccine. Mar. Biotechnol. (NY) 13: 963-970. https://doi.org/10.1007/s10126-010-9359-y

Cited by

  1. Cross-protective effect of a novel multi-antigen-chimeric vaccine against Streptococcus and Staphylococcus aureus infection in mice vol.63, pp.12, 2013, https://doi.org/10.1099/jmm.0.073593-0
  2. Well-known surface and extracellular antigens of pathogenic microorganisms among the immunodominant proteins of the infectious microalgae Prototheca zopfii vol.5, pp.None, 2015, https://doi.org/10.3389/fcimb.2015.00067
  3. Conserved Surface Accessible Nucleoside ABC Transporter Component SP0845 Is Essential for Pneumococcal Virulence and Confers Protection In Vivo vol.10, pp.2, 2013, https://doi.org/10.1371/journal.pone.0118154
  4. The type II histidine triad protein HtpsC is a novel adhesion with the involvement of Streptococcus suis virulence vol.6, pp.6, 2013, https://doi.org/10.1080/21505594.2015.1056971
  5. Magnesium Presence Prevents Removal of Antigenic Nuclear-Associated Proteins from Bovine Pericardium for Heart Valve Engineering vol.23, pp.13, 2013, https://doi.org/10.1089/ten.tea.2016.0405
  6. The double adjuvants LTB and CpG significantly enhanced the immuno-protective effects of recombinant GIT derived from Staphylococcus aureus and Streptococcus in mice vol.67, pp.3, 2013, https://doi.org/10.1099/jmm.0.000666
  7. Characterization of SeseC_01411 as a surface protective antigen of Streptococcus equi ssp. zooepidemicus vol.118, pp.None, 2013, https://doi.org/10.1016/j.rvsc.2018.05.007
  8. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) moonlights as an adhesin in Mycoplasma hyorhinis adhesion to epithelial cells as well as a plasminogen receptor mediating extracellular matrix degradat vol.52, pp.1, 2013, https://doi.org/10.1186/s13567-021-00952-8