DOI QR코드

DOI QR Code

Exopolysaccharide Produced by Pediococcus acidilactici M76 Isolated from the Korean Traditional Rice Wine, Makgeolli

  • Song, Young-Ran (Department of Food Science and Human Nutrition, and Research Institute of Makgeolli, Chonbuk National University) ;
  • Jeong, Do-Youn (Sunchang Research Center for Fermentation Microbes (SRCM)) ;
  • Cha, Youn-Soo (Department of Food Science and Human Nutrition, and Research Institute of Makgeolli, Chonbuk National University) ;
  • Baik, Sang-Ho (Department of Food Science and Human Nutrition, and Research Institute of Makgeolli, Chonbuk National University)
  • Received : 2013.01.14
  • Accepted : 2013.02.23
  • Published : 2013.05.28

Abstract

This work is aimed to increase knowledge of the functional exopolysaccharide (EPS) from lactic acid bacteria (LAB) in makgeolli, a Korean fermented rice wine. Among LAB strains isolated from makgeolli, strain M76 was selected as a functional strain producing a bioactive EPS, based on its antioxidative activity on the DPPH radical. The 16S rRNA gene sequencing analysis showed a high sequence similarity (99.0%) with P. acidilactici, but had different biochemical properties with the already known P. acidilactici type strains in the aspect of carbohydrates utilization. The obtained P. acidilactici M76 produced a soluble EPS above 2 g/l. One-step chromatography using gel filtration after ethanol precipitation from the supernatant of P. acidilactici M76 was enough to obtain purified EPS with a single peak, showing a molecular mass of approximately 67 kDa. Componential and structural analyses of EPS by TLC, HPLC, and FT-IR indicated that the EPS is a glucan, consisting of glucose units. The purified EPS had antioxidant activity on the DPPH radical of 45.8% at a concentration of 1 mg/ml. The purified EPS also showed proliferative effect on the pancreatic RIN-m5F cell line and remarkable protection activity on alloxan-induced cytotoxicity. This potent antioxidant and antidiabetic EPS by LAB in makgeolli may contribute to understanding the functionality of makgeolli.

Keywords

References

  1. Asker, M. M. S., Y. M. Ahmed, and M. F. Ramadan. 2009. Chemical characteristics and antioxidant activity of exopolysaccharide fractions from Microbacterium terregens. Carbohydr. Polym. 77: 563-567. https://doi.org/10.1016/j.carbpol.2009.01.037
  2. Blois, M. S. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  3. Cerning, J. and V. M. E. Marshall. 1999. Exopolysaccharides produced by the dairy lactic acid bacteria. Res. Dev. Microbiol. 3: 195-209.
  4. Chen, W., Z. Zhao, S. F. Chen, and Y. Q. Li. 2008. Optimization for the production of exopolysaccharide from Fomes fomentarius in submerged culture and its antitumor effect in vitro. Bioresour. Technol. 99: 3187-3194. https://doi.org/10.1016/j.biortech.2007.05.049
  5. Cho, E. J., H. J. Hwang, S. W. Kim, J. Y. Oh, Y. M. Baek, J. W. Choi, et al. 2007. Hypoglycemic effects of exopolysaccharides produced by mycelial cultures of two different mushrooms Tremella fuciformis and Phellinus baumii in ob/ob mice. Appl. Microbiol. Biotechnol. 75: 1257-1265. https://doi.org/10.1007/s00253-007-0972-2
  6. Demir, M. S. and M. Yamac. 2008. Antimicrobial activities of basidiocarp, submerged mycelium and exopolysaccharide of some native Basidiomycetes strains. J. Appl. Biol. Sci. 2: 89-93.
  7. Dicks, L. M. T. and A. Endo. 2009. Taxonomic status of lactic acid bacteria in vine and key characteristics to differentiate species. S. Afr. J. Enol. Vitic. 30: 72-90.
  8. Ding, X., J. Zhang, P. Jiang, X. Xu, and Z. Liu. 2004. Structural features and hypoglycaemic activity of an exopolysaccharide produced by Sorangium cellulosum. Lett. Appl. Microbiol. 38: 223-228. https://doi.org/10.1111/j.1472-765X.2004.01465.x
  9. Endo, A. and S. Okada. 2005. Monitoring the lactic acid bacterial diversity during shochu fermentation by PCR-denaturing gradient gel electrophoresis. J. Biosci. Bioeng. 99: 216-221.
  10. Fusconi, R., R. M. N. Assuncao, R. de Moura Guimaraes, G. Rodrigues Filho, and A. E. da Hora Machado. 2010. Exopolysaccharide produced by Gordonia polyisoprenivorans CCT 7137 in GYM commercial medium and sugarcane molasses alternative medium: FT-IR study and emulsifying activity. Carbohydr. Polym. 79: 403-408. https://doi.org/10.1016/j.carbpol.2009.08.023
  11. Garai-Ibabe, G., M. T. Duenas, A. Irastorza, E. Sierra-Filardi, M. L. Werning, P. Lopez, et al. 2010. Naturally occurring 2-substituted (1,3)-beta-D-glucan producing Lactobacillus suebicus and Pediococcus parvulus strains with potential utility in the production of functional foods. Bioresour. Technol. 101: 9254-9263. https://doi.org/10.1016/j.biortech.2010.07.050
  12. Jeong, J. W., P. W. Nam, S. J. Lee, and K. G. Lee. 2011. Antioxidant activities of Korean rice wine concentrates. J. Agric. Food Chem. 59: 7039-7044. https://doi.org/10.1021/jf200901j
  13. Jin, J., S. Y. Kim, Q. Jin, H. J. Eom, and N. S. Han. 2008. Diversity analysis of lactic acid bacteria in takju, Korean rice wine. J. Microbiol. Biotechnol. 18: 1678-1682.
  14. Kim, J. Y., D. Kim, P. Park, H. I. Kang, E. K. Ryu, and S. M. Kim. 2011. Effects of storage temperature and time on the biogenic amine content and microflora in Korean turbid rice wine, makgeolli. Food Chem. 128: 87-92. https://doi.org/10.1016/j.foodchem.2011.02.081
  15. Kim, S. Y., K. S. Yoo, J. E. Kim, J. S. Kim, J. Y. Jung, Q. Jin, et al. 2010. Diversity analysis of lactic acid bacteria in Korean rice wines by culture-independent method using PCR-denaturing gradient gel electrophoresis. Food Sci. Biotechnol. 19: 749-755. https://doi.org/10.1007/s10068-010-0105-z
  16. Kolodzieja, H. and A. F. Kiderlen. 2007. In vitro evaluation of antibacterial and immunomodulatory activities of Pelargonium reniforme, Pelargonium sidoides and the related herbal drug preparation $EPs{(R)}$ 7630. Phytomedicine 14: 18-26.
  17. Li, J., L. Fan, and S. Ding. 2011. Isolation, purification and structure of a new water-soluble polysaccharide from Zizyphus jujuba cv. Jinsixiaozao. Carbohydr. Polym. 83: 477-482. https://doi.org/10.1016/j.carbpol.2010.08.014
  18. Manrique, G. D. and F. M. Lajolo. 2002. FT-IR spectroscopy as a tool for measuring degree of methyl esterification in pectins isolated from ripening papaya fruit. Postharvest Biol. Technol. 25: 99-107. https://doi.org/10.1016/S0925-5214(01)00160-0
  19. Masuko, T., A. Minami, N. Iwasaki, T. Majima, S. I. Nishimura, and Y. C. Lee. 2005. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal. Biochem. 339: 69-72. https://doi.org/10.1016/j.ab.2004.12.001
  20. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  21. Patel, S., N. Kasoju, U. Bora, and A. Goyal. 2010. Structural analysis and biomedical applications of dextran produced by a new isolate Pediococcus pentosaceus screened from biodiversity hot spot Assam. Bioresour. Technol. 101: 6852-6855. https://doi.org/10.1016/j.biortech.2010.03.063
  22. Patil, K. P., D. K. Patil, B. L. Chaudhari, and S. B. Chincholkar. 2011. Production of hyaluronic acid from Streptococcus zooepidemicus MTCC 3523 and its wound healing activity. J. Biosci. Bioeng. 111: 286-288. https://doi.org/10.1016/j.jbiosc.2010.10.012
  23. Rasulov, M. M., I. G. Kuznetsov, L. I. Slutski, M. V. Velikaia, A. G. Zabozlaev, and M. G. Voronkov. 1993. Ulcerostatic effect of Bacillus mucilaginosus exopolysaccharide and its possible mechanisms. Bull. Exp. Biol. Med. 116: 1384-1386. https://doi.org/10.1007/BF00805153
  24. Semjonovs, P. and P. Zikmanis. 2008. Evaluation of novel lactosepositive and exopolysaccharide-producing strain of Pediococcus pentosaceus for fermented foods. Eur. Food Res. Technol. 227: 851-856. https://doi.org/10.1007/s00217-007-0796-4
  25. Seo, D. H., J. H. Jung, H. Y. Kim, Y. R. Kim, S. J. Ha, and Y. C. Kim. 2007. Identification of lactic acid bacteria involved in traditional Korean rice wine fermentation. Food Sci. Biotechnol. 16: 994-998.
  26. Smitinont, T., C. Tansakul, S. Tanasupawat, S. Keeratipibul, L. Navarini, M. Bosco, and P. Cescutti. 1999. Exopolysaccharideproducing lactic acid bacteria strains from traditional Thai fermented foods: Isolation, identification and exopolysaccharide characterization. Int. J. Food Microbiol. 51: 105-111. https://doi.org/10.1016/S0168-1605(99)00094-X
  27. Song, Y. R., N. E. Song, J. H. Kim, Y. C. Nho, and S. H. Baik. 2011. Exopolysaccharide produced by Bacillus licheniformis strains isolated from kimchi. J. Gen. Appl. Microbiol. 57: 169-175. https://doi.org/10.2323/jgam.57.169
  28. Vaningelgem, F., M. Zamfir, F. Mozzi, T. Adriany, M. Vancanneyt, J. Swings, and L. De Vuyst. 2004. Biodiversity of exopolysaccharides produced by Streptococcus thermophilus strains is reflected in their production and their molecular and functional characteristics. Appl. Environ. Microbiol. 70: 900-912. https://doi.org/10.1128/AEM.70.2.900-912.2004
  29. Velasco, S. E., M. J. Yebra, V. Monedero, I. Ibarburu, M. T. Duenas, and A. Irastorza. 2007. Influence of the carbohydrate source on ${\beta}$-glucan production and enzyme activities involved in sugar metabolism in Pediococcus parvulus 2.6. Int. J. Food Microbiol. 115: 325-334. https://doi.org/10.1016/j.ijfoodmicro.2006.12.023
  30. Wang, H. Y., X. Jiang, H. J. Mu, X. Liang, and H. S. Guan. 2007. Structure and protective effect of exopolysaccharide from P. agglomerans strain KFS-9 against UV radiation. Microbiol. Res. 162: 124-129. https://doi.org/10.1016/j.micres.2006.01.011
  31. Walling, E., M. Dols-Lafargue, and A. Lonvaud-Funel. 2005. Glucose fermentation kinetics and exopolysaccharide production by ropy Pediococcus damnosus IOEB8801. Food Microbiol. 22: 71-78. https://doi.org/10.1016/j.fm.2004.04.003
  32. Zhang, H. N., J. H. He, L. Yuan, and Z. B. Lin. 2003. In vitro and in vivo protective effect of Ganoderma lucidum polysaccharide on alloxan-induced pancreatic islets damage. Life Sci. 73: 2307-2319. https://doi.org/10.1016/S0024-3205(03)00594-0

Cited by

  1. 알코올 내성 젖산균 Pediococcus acidilactici K3와 S1의 분리 및 생리적 특성 vol.41, pp.4, 2013, https://doi.org/10.4014/kjmb.1308.08001
  2. Lipid-Lowering Effects of Pediococcus acidilactici M76 Isolated from Korean Traditional Makgeolli in High Fat Diet-Induced Obese Mice vol.6, pp.3, 2014, https://doi.org/10.3390/nu6031016
  3. Sugar-coated: exopolysaccharide producing lactic acid bacteria for food and human health applications vol.6, pp.3, 2013, https://doi.org/10.1039/c4fo00529e
  4. Biopolymers from lactic acid bacteria. Novel applications in foods and beverages vol.6, pp.None, 2013, https://doi.org/10.3389/fmicb.2015.00834
  5. 종양이식 모델 쥐에서 동결건조 시판 막걸리가 종양성장에 미치는 영향 vol.23, pp.1, 2013, https://doi.org/10.11002/kjfp.2016.23.1.104
  6. 막걸리 유래 미생물의 활용을 위한 연구 동향 vol.44, pp.3, 2013, https://doi.org/10.4014/mbl.1605.05002
  7. Screening and Identification of New Types of Exopolysaccharides-Producing Lactic Acid in the Inner Mongolia Dairy Products vol.23, pp.2, 2013, https://doi.org/10.2478/aucft-2019-0010
  8. Characteristic of Co-Culture Biofilm Formed by Lactobacillus plantarum and Pediococcus acidilactici, and Antagonistic Effects of This Biofilm on Pathogen Growth vol.21, pp.2, 2013, https://doi.org/10.11301/jsfe.20564
  9. Probiotic properties of a phytase producing Pediococcus acidilactici strain SMVDUDB2 isolated from traditional fermented cheese product, Kalarei vol.10, pp.None, 2020, https://doi.org/10.1038/s41598-020-58676-2
  10. Characterization and in-vitro screening of probiotic potential of novel Weissella confusa strain GCC_19R1 isolated from fermented sour rice vol.3, pp.None, 2013, https://doi.org/10.1016/j.crbiot.2021.04.001
  11. 제주 전통 발효식품 쉰다리에서 분리한 세균의 군집 조사 및 어류질병세균과 인체유해세균에 대한 항균활성효과 vol.31, pp.1, 2013, https://doi.org/10.5352/jls.2021.31.1.73
  12. Characterization of immunomodulatory, anticancer and antioxidant properties of an extracellular polymer produced by Enterococcus sp. in vegetable waste medium vol.4, pp.2, 2013, https://doi.org/10.1007/s42398-021-00188-4
  13. Evaluation of Probiotic Properties of Pediococcus acidilactici M76 Producing Functional Exopolysaccharides and Its Lactic Acid Fermentation of Black Raspberry Extract vol.9, pp.7, 2021, https://doi.org/10.3390/microorganisms9071364
  14. Production of Functional Buttermilk and Soymilk Using Pediococcus acidilactici BD16 (alaD+) vol.26, pp.15, 2013, https://doi.org/10.3390/molecules26154671