DOI QR코드

DOI QR Code

PTP1B Inhibitory Secondary Metabolites from Marine-Derived Fungal Strains Penicillium spp. and Eurotium sp.

  • Sohn, Jae Hak (College of Medical and Life Sciences, Silla University) ;
  • Lee, Yu-Ri (College of Medical and Life Sciences, Silla University) ;
  • Lee, Dong-Sung (Hanbang Body-Fluid Research Center, Wonkwang University) ;
  • Kim, Youn-Chul (Hanbang Body-Fluid Research Center, Wonkwang University) ;
  • Oh, Hyuncheol (Hanbang Body-Fluid Research Center, Wonkwang University)
  • Received : 2013.03.25
  • Accepted : 2013.06.11
  • Published : 2013.09.28

Abstract

The selective inhibition of PTP1B has been widely recognized as a potential drug target for the treatment of type 2 diabetes and obesity. In the course of screening for PTP1B inhibitory fungal metabolites, the organic extracts of several fungal species isolated from marine environments were found to exhibit significant inhibitory effects, and the bioassay-guided investigation of these extracts resulted in the isolation of fructigenine A (1), cyclopenol (2), echinulin (3), flavoglaucin (4), and viridicatol (5). The structures of these compounds were determined mainly by analysis of NMR and MS data. These compounds inhibited PTP1B activity with 50% inhibitory concentration values of 10.7, 30.0, 29.4, 13.4, and 64.0 ${\mu}M$, respectively. Furthermore, the kinetic analysis of PTP1B inhibition by compounds 1 and 5 suggested that compound 1 inhibited PTP1B activity in a noncompetitive manner, whereas compound 5 inhibited PTP1B activity in a competitive manner.

Keywords

References

  1. Arai K, Kimura K, Mushiroda T, Yamamoto Y. 1989. Structures of fructigenines A and B, new alkaloids isolated from Penicillium fructigenum Takeuchi. Chem. Pharm. Bull. 37: 2937-2939. https://doi.org/10.1248/cpb.37.2937
  2. Ahmad F, Azevedo JL, Cortright R, Dohm GL, Goldstein BJ. 1997. Alterations in skeletal muscle protein-tyrosine phosphatase activity and expression in insulin-resistant human obesity and diabetes. J. Clin. Invest. 100: 449-458. https://doi.org/10.1172/JCI119552
  3. Birkinshaw JH, Luckner M, Mohammed YS, Mothers K, Stickings CE. 1963. Studies in the biochemistry of microorganisms. Viridicatol and cyclopenol, metabolites of Penicillium viridicatum Westling and Penicillium cyclopium Westling. Biochem. J. 89: 196-202. https://doi.org/10.1042/bj0890196
  4. Brase S, Encinas A, Keck J, Nising CF. 2009. Chemistry and biology of mycotoxins and related fungal metabolites. Chem. Rev. 109: 3903-3990. https://doi.org/10.1021/cr050001f
  5. Bugni TS, Ireland CM. 2004. Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Nat. Prod. Rep. 21: 143-163. https://doi.org/10.1039/b301926h
  6. Calera MR, Vallega G, Pilch PF. 2000. Dynamics of proteintyrosine phosphatases in rat adipocytes. J. Biol. Chem. 275: 6308-6312. https://doi.org/10.1074/jbc.275.9.6308
  7. Chai YJ, Cui C B, L i CW, Wu C J, Tian CK, Hua W. 2012. Activation of the dormant secondary metabolite production by introducing gentamicin-resistance in a marine-derived Penicillium purpurogenum G59. Mar. Drugs 10: 559-582. https://doi.org/10.3390/md10030559
  8. Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy AL, et al. 1999. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283: 1544-1548. https://doi.org/10.1126/science.283.5407.1544
  9. Feng Y, Carroll AR, Addepalli R, Fechner GA, Avery VM, Quinn RJ. 2007. Vanillic acid derivatives from the green algae Cladophora socialis as potent protein tyrosine phosphatase 1B inhibitors. J. Nat. Prod. 70: 1790-1792. https://doi.org/10.1021/np070225o
  10. Fenical W, Jensen PR. 2006. Developing a new resource for drug discovery: marine actinomycete bacteria. Nat. Chem. Biol. 2: 666-673. https://doi.org/10.1038/nchembio841
  11. Fremlin LJ, Piggott AM, Lacey E, Capon RJ. 2009. Cottoquinazoline A and cotteslosins A and B, metabolites from an Australian marine-derived strain of Aspergillus versicolor. J. Nat. Prod. 72: 666-670. https://doi.org/10.1021/np800777f
  12. Gao J, Leon F, Radwan MM, Dale OR, Husni AS, Manly SP, et al. 2011. Benzyl derivatives with in vitro binding affinity for human opioid and cannabinoid receptors from the fungus Eurotium repens. J. Nat. Prod. 74: 1636-1639. https://doi.org/10.1021/np200147c
  13. Johnson TO, Ermolieff J, Jirousek MR. 2002. Protein tyrosine phosphatase 1B inhibitors for diabetes. Nat. Rev. Drug Discov. 1: 696-709. https://doi.org/10.1038/nrd895
  14. Kaszubska W, Falls HD, Schaefer VG, Haasch D, Frost L, Hessler P, et al. 2002. Protein tyrosine phosphatase 1B negatively regulates leptin signaling in a hypothalamic cell line. Mol. Cell. Endocrinol. 195: 109-118. https://doi.org/10.1016/S0303-7207(02)00178-8
  15. Kenner KA, Anyanwu E, Olefsky JM, Kusari J. 1996. Protein-tyrosine phosphatase 1B is a negative regulator of insulin- and insulin-like growth factor-I-stimulated signaling. J. Biol. Chem. 271: 19810-19816. https://doi.org/10.1074/jbc.271.33.19810
  16. Klaman LD, Boss O, Peroni OD, Kim JK, Martino JL, Zabolotny JM, et al. 2000. Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol. Cell. Biol. 20: 5479-5489. https://doi.org/10.1128/MCB.20.15.5479-5489.2000
  17. Lee S, Wang Q. 2007. Recent development of small molecular specific inhibitor of protein tyrosine phosphatase 1B. Med. Res. Rev. 27: 553-573. https://doi.org/10.1002/med.20079
  18. Li Y, Li X, Lee U, Kang J, Choi H, Son B. 2006. A new radical scavenging anthracene glycoside, asperflavin ribofuranoside, and polyketides from a marine isolate of the fungus Microsporum. Chem. Pharm. Bull. 54: 882-883. https://doi.org/10.1248/cpb.54.882
  19. Liu S, Zeng LF, Wu L, Yu X, Xue T, Gunawan AM, et al. 2008. Targeting inactive enzyme conformation: aryl diketoacid derivatives as a new class of PTP1B inhibitors. J. Am. Chem. Soc. 130: 17075-17084. https://doi.org/10.1021/ja8068177
  20. Molinski TF, Dalisay DS, Lievens SL, Saludes JP. 2009. Drug development from marine natural products. Nat. Rev. Drug Discov. 8: 69-85. https://doi.org/10.1038/nrd2487
  21. Morrison CD, White CL, Wang Z, Lee SY, Lawrence DS, Cefalu WT, et al. 2007. Increased hypothalamic protein tyrosine phosphatase 1B contributes to leptin resistance with age. Endocrinology 148: 433-440. https://doi.org/10.1210/en.2006-0672
  22. Myers Jr MG. 2004. Leptin receptor signaling and the regulation of mammalian physiology. Recent Prog. Horm. Res. 59: 287-304. https://doi.org/10.1210/rp.59.1.287
  23. Na M, Yang S, He L, Oh H, Kim BS, Oh WK, et al. 2006. Inhibition of protein tyrosine phosphatase 1B by ursanetype triterpenes isolated from Symplocos paniculata. Planta Med. 72: 261-263. https://doi.org/10.1055/s-2005-873194
  24. Saleem MM, A li M S, Hussain S S, J abbar AA, A shraf MM, Lee YS. 2007. Marine natural products of fungal origin. Nat. Prod. Rep. 24: 1142-1152. https://doi.org/10.1039/b607254m
  25. Seely BL, Staubs PA, Reichart DR, Berhanu P, Milarski KL, Saltiel AR, et al. 1996. Protein tyrosine phosphatase 1B interacts with the activated insulin receptor. Diabetes 45: 1379-1385. https://doi.org/10.2337/diab.45.10.1379
  26. Seo C, Sohn JH, Ahn JS, Yim JH, Lee HK, Oh H. 2009. Protein tyrosine phosphatase 1B inhibitory effects of depsidone and pseudodepsidone metabolites from the Antarctic lichen Stereocaulon alpinum. Bioorg. Med. Chem. Lett. 19: 2801-2803. https://doi.org/10.1016/j.bmcl.2009.03.108
  27. Talapatra SK, Mandal SK, Bhaumik A, Mukhopadhyay S, Kar P, Patra A, et al. 2001. Echinulin, a novel cyclic dipeptide carrying a triprenylated indole moiety from an Anacardiaceae, a Cucurbitaceae and two Orchidaceae plants: detailed high resolution 2D-NMR and mass spectral studies. J. Indian Chem. Soc. 78: 773-777.
  28. Wei MY, Yang RY, Shao CL, Wang CY, Deng DS, She ZG, et al. 2011. Isolation, structure elucidation, crystal structure, and biological activity of a marine natural alkaloid, viridicatol. Chem. Nat. Comp. 47: 322-325. https://doi.org/10.1007/s10600-011-9922-4
  29. Wiesmann C, Barr KJ, Kung J, Zhu J , Erlanson DA, Shen W, et al. 2004. Allosteric inhibition of protein tyrosine phosphatase 1B. Nat. Struct. Mol. Biol. 11: 730-737. https://doi.org/10.1038/nsmb803
  30. Xie L, Lee SY, Anderson JN, Waters S, Shen K, Guo XL, et al. 2003. Cellular effects of small molecule PTP1B inhibitors on insulin signaling. Biochemistry 42: 12792-12804. https://doi.org/10.1021/bi035238p
  31. Yoshihira K, Takahashi C, Sekita S, Natori S. 1972. Tetrahydroauroglaucin from Penicillium charlesii. Chem. Pharm. Bull. 20: 2727-2728. https://doi.org/10.1248/cpb.20.2727
  32. Yoshiaki M, Ito C, Tokuda H, Osawa T, Itoigawa M. 2010. Evaluation of flavoglaucin, its derivatives and pyranonigrins produced by molds used in fermented foods for inhibiting tumor promotion. Biosci. Biotechnol. Biochem. 74: 1120-1122. https://doi.org/10.1271/bbb.90955
  33. Zabolotny JM, Bence-Hanulec KK, Stricker-Krongrad A, Haj F, Wang Y, Minokoshi Y, et al. 2002. PTP1B regulates leptin signal transduction in vivo. Dev. Cell 2: 489-495. https://doi.org/10.1016/S1534-5807(02)00148-X
  34. Zhang S, Zhang ZY. 2007. PTP1B as a drug target: recent developments in PTP1B inhibitor discovery. Drug Discov. Today 12: 373-381. https://doi.org/10.1016/j.drudis.2007.03.011

Cited by

  1. Inhibitory Effects of Benzaldehyde Derivatives from the Marine Fungus Eurotium sp. SF-5989 on Inflammatory Mediators via the Induction of Heme Oxygenase-1 in Lipopolysaccharide-Stimulated RAW264.7 M vol.15, pp.12, 2013, https://doi.org/10.3390/ijms151223749
  2. Viridicatol from Marine-derived Fungal Strain Penicillium sp. SF-5295 Exerts Anti-inflammatory Effects through Inhibiting NF-κB Signaling Pathway on Lipopolysaccharide-induced RAW264.7 and BV2 C vol.21, pp.4, 2015, https://doi.org/10.20307/nps.2015.21.4.240
  3. Pyridinoacridine alkaloids of marine origin: NMR and MS spectral data, synthesis, biosynthesis and biological activity vol.11, pp.None, 2013, https://doi.org/10.3762/bjoc.11.183
  4. Statistical Research on the Bioactivity of New Marine Natural Products Discovered during the 28 Years from 1985 to 2012 vol.13, pp.1, 2015, https://doi.org/10.3390/md13010202
  5. Marine natural products vol.32, pp.2, 2015, https://doi.org/10.1039/c4np00144c
  6. New Kipukasin from Marine Isolate of the Fungus Aspergillus flavus vol.52, pp.2, 2013, https://doi.org/10.1007/s10600-016-1610-y
  7. Antidiabetic activity of the chemical constituents of Combretum dolichopetalum root in mice vol.15, pp.None, 2013, https://doi.org/10.17179/excli2016-252
  8. Bioactive Compounds Produced by Strains of Penicillium and Talaromyces of Marine Origin vol.14, pp.2, 2016, https://doi.org/10.3390/md14020037
  9. Experimental mould growth and mycotoxin diffusion in different food items vol.10, pp.2, 2013, https://doi.org/10.3920/wmj2016.2163
  10. Metabolic Disorder in Chronic Obstructive Pulmonary Disease (COPD) Patients: Towards a Personalized Approach Using Marine Drug Derivatives vol.15, pp.3, 2013, https://doi.org/10.3390/md15030081
  11. Inhibitors of Protein Tyrosine Phosphatase 1B from Marine Natural Products vol.14, pp.7, 2013, https://doi.org/10.1002/cbdv.201600462
  12. Marine Pharmacology in 2012–2013: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immu vol.15, pp.9, 2013, https://doi.org/10.3390/md15090273
  13. Protein tyrosine phosphatase 1B inhibitors from natural sources vol.41, pp.2, 2018, https://doi.org/10.1007/s12272-017-0997-8
  14. The gut mycobiome composition is linked to carotid atherosclerosis vol.9, pp.2, 2013, https://doi.org/10.3920/bm2017.0029
  15. The chejuenolide biosynthetic gene cluster harboring an iterative trans-AT PKS system in Hahella chejuensis strain MB-1084 vol.71, pp.5, 2013, https://doi.org/10.1038/s41429-017-0023-x
  16. Looking at Marine-Derived Bioactive Molecules as Upcoming Anti-Diabetic Agents: A Special Emphasis on PTP1B Inhibitors vol.23, pp.12, 2013, https://doi.org/10.3390/molecules23123334
  17. Modified diterpenoids from the tuber of Icacina oliviformis as protein tyrosine phosphatase 1B inhibitors vol.7, pp.2, 2013, https://doi.org/10.1039/c9qo01320b
  18. Protein tyrosine phosphatase 1B inhibitors from a marine-derived fungal strain aspergillus sp. SF-5929 vol.34, pp.5, 2013, https://doi.org/10.1080/14786419.2018.1499629
  19. Inhibition of cellular inflammatory mediator production and amelioration of learning deficit in flies by deep sea Aspergillus-derived cyclopenin vol.73, pp.9, 2013, https://doi.org/10.1038/s41429-020-0302-9
  20. Fungi and their metabolites in grain from individual households in Croatia vol.14, pp.2, 2013, https://doi.org/10.1080/19393210.2021.1883746
  21. A Treasure of Bioactive Compounds from the Deep Sea vol.9, pp.11, 2013, https://doi.org/10.3390/biomedicines9111556
  22. Bioactive compounds derived from the marine-derived fungus MCCC3A00951 and their influenza neuraminidase inhibition activity in vitro and in silico vol.35, pp.24, 2013, https://doi.org/10.1080/14786419.2020.1817015