DOI QR코드

DOI QR Code

Anti-Oxidative and Anti-Obesity Activities of Tetrapanax papyriferus and Siegesbeckia pubescens Extracts and their Synergistic Anti-Obesity Effects

통초.희렴 추출물의 항산화.항비만 활성 및 혼합물의 항비만 시너지 효과

  • Park, Jung Ae (Blue-Bio Industry Regional Innovation Center, Dong-Eui University) ;
  • Jin, Kyong-Suk (Blue-Bio Industry Regional Innovation Center, Dong-Eui University) ;
  • Lee, Ji Young (Blue-Bio Industry Regional Innovation Center, Dong-Eui University) ;
  • Kwon, Hyun Ju (Blue-Bio Industry Regional Innovation Center, Dong-Eui University) ;
  • Kim, Byung Woo (Blue-Bio Industry Regional Innovation Center, Dong-Eui University)
  • 박정애 (동의대학교 블루바이오소재개발 및 실용화 지원센터) ;
  • 진경숙 (동의대학교 블루바이오소재개발 및 실용화 지원센터) ;
  • 이지영 (동의대학교 블루바이오소재개발 및 실용화 지원센터) ;
  • 권현주 (동의대학교 블루바이오소재개발 및 실용화 지원센터) ;
  • 김병우 (동의대학교 블루바이오소재개발 및 실용화 지원센터)
  • Received : 2013.06.26
  • Accepted : 2013.08.09
  • Published : 2013.09.28

Abstract

In this study, the anti-oxidative and anti-obesity activities of two medicinal herb extracts, Tetrapanax papyriferus (TP) and Siegesbeckia pubescens (SP), were evaluated using DPPH radical scavenging activity assay, lipase enzyme inhibition assay, and the cell culture model system. Both methanol extracts of TP and SP showed DPPH radical scavenging activities dose-dependently, and the $IC_{50}$ of DPPH radical scavenging activities of the two medicinal herbs were 65.23 and 47.79 ${\mu}g/ml$, respectively. Furthermore, both extracts suppressed effectively lipase enzyme activity dose-dependently. Moreover, TP and SP extracts significantly suppressed adipocyte differentiation, lipid accumulation, triglyceride (TG) contents on 3T3-L1 preadipocytes in a dose-dependent manner without cytotoxicity. Their anti-obesity effect was modulated by cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins ${\alpha}$ ($C/EBP{\alpha}$), $C/EBP{\beta}$ and peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$) gene and protein expressions. Furthermore, TP and SP possessed a synergistic effect on anti-obesity activity. The identification of the active compounds that confer the anti-obesity activity of TP and SP might be needed.

본 연구에서는 통초(Tetrapanax papyriferus)와 희렴(Siegesbeckia pubescens)의 항산화 및 항비만 활성을 DPPH radical 소거능과 세포실험계를 이용하여 분석하였다. 통초와 희렴의 DPPH radical 소거능의 50% 저해능($IC_{50}$)은 각각 65.23과 47.79 ${\mu}g/ml$로 나타났다. 또한 두 시료 모두 농도 의존적으로 lipase 효소 활성을 유의적으로 억제시켰으며, 3T3-L1 preadipocyte를 이용하여 지방세포 분화 및 지방생성에 미치는 영향을 분석한 결과 통초와 희렴 모두 지방 세포 분화, 지방 축적, TG 함량 등을 독성 없이 농도의존적으로 억제함을 보였다. 이러한 통초와 희렴의 지방세포분화억제능은 핵심 작용 인자인 $C/EBP{\alpha}$, $C/EBP{\beta}$, 그리고 $PPAR{\gamma}$의 유전자 및 단백질 발현조절에서 기인함을 확인하였다. 또한 통초와 희렴 간의 항비만 시너지 효과를 분석한 결과 각 시료의 단독 처리시보다 병용 처리시 더 높은 지방세포분화억제능을 보여 두 시료간에 시너지 효과를 보유함을 확인하였다. 이러한 결과는 통초 및 희렴의 항비만 활성 및 그 작용 기전을 밝힌 것이며 추후 계속적인 연구를 통해 활성 물질의 규명이 필요할 것으로 판단된다.

Keywords

References

  1. Armitage P, Berry G, Matthews JNS. 2001. Statistical Methods in Medical Research, pp. 102-111. 4th Ed. Blackwell Publishing, Hoboken, New Jersey.
  2. Chen HC, Farese RV. 2005. Inhibition of triglyceride synthesis as a treatment strategy for obesity: lessons from DGAT1-deficient mice. Arterioscler. Thromb. Vasc. Biol. 25: 482-486. https://doi.org/10.1161/01.ATV.0000151874.81059.ad
  3. de Onis M, Blossner M, Borghi E. 2010. Global prevalence and trends of overweight and obesity among preschool children. Am. J. Clin. Nutr. 92: 1257-1264. https://doi.org/10.3945/ajcn.2010.29786
  4. Fox KE, Fankell DM, Erickson PF, Majka SM, Crossno JT, Klemm DJ. 2006. Depletion of cAMP-response element-binding protein/ATF1 inhibits adipogenic conversion of 3T3-L1 cells ectopically expressing CCAAT/enhancer-binding protein (C/EBP) alpha, C/EBP beta, or PPAR gamma 2. J. Biol. Chem. 281: 40341-40353. https://doi.org/10.1074/jbc.M605077200
  5. Green H, Meuth M. 1974. An established pre-adipose cell line and its differentiation in culture. Cell 3: 127-133. https://doi.org/10.1016/0092-8674(74)90116-0
  6. Gupta R, Rathi P, Gupta N, Bradoo S. 2003 Lipase assays for conventional and molecular screening: an overview. Biotechnol. Appl. Biochem. 37: 63-71. https://doi.org/10.1042/BA20020059
  7. Haslam DW, James WP. 2005. Obesity. Lancet 366: 1197- 1209. https://doi.org/10.1016/S0140-6736(05)67483-1
  8. Heck AM, Yanovski JA, Calis KA. 2000. Orlistat, a new lipase inhibitor for the management of obesity. Pharmacotherapy. 20: 270-279. https://doi.org/10.1592/phco.20.4.270.34882
  9. Huh JE, Baek YH, Lee JD, Choi DY, Park DS. 2008. Therapeutic effect of Siegesbeckia pubescens on cartilage protection in a rabbit collagenase-induced model of osteoarthritis. J. Pharmacol. Sci. 107: 317-328. https://doi.org/10.1254/jphs.08010FP
  10. Hwang JH, Kim JD. 2011. Inhibitory effects of Siegesbeckiae herba extract on angiogenesis and adipogenesis. Biotechnol. Bioprocess Eng. 16: 144-152. https://doi.org/10.1007/s12257-011-0012-z
  11. Jessen BA, Stevens GJ. 2002. Expression profiling during adipocyte differentiation of 3T3-L1 fibroblasts. Gene 299: 95-100. https://doi.org/10.1016/S0378-1119(02)01017-X
  12. Jun H, Kim J, Bang J, Kim H, Beuchat LR, Ryu JH. 2013. Combined effects of plant extracts in inhibiting the growth of Bacillus cereus in reconstituted infant rice cereal. Int. J. Food Microbiol. 160: 260-266. https://doi.org/10.1016/j.ijfoodmicro.2012.10.020
  13. Kedare SB, Singh RP. 2011. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 48: 412-422. https://doi.org/10.1007/s13197-011-0251-1
  14. Koutnikova H, Auwerx J. 2001. Regulation of adipocyte differentiation. Ann. Med. 33: 556-561. https://doi.org/10.3109/07853890108995966
  15. Lau CW, Douketis JD, Morrison KM, Hramiak IM, Sharma AM, Ur E. 2007. 2006 Canadian clinical practice guidelines on the management and prevention of obesity in adults and children. CMAJ. 176: Sa-S13.
  16. Leung WY, Thomas GN, Chan JC, Tomlinson B. 2003. Weight management and current options in pharmacotherapy: orlistat and sibutramine. Clin. Ther. 25: 58-80. https://doi.org/10.1016/S0149-2918(03)90009-9
  17. Moon SH, Lee JM, Kim HJ, Kang YK, Park HR. 2010. Cytotoxicity and apoptosis-induced activity of extracts from Tetrapanax papyriferus. Cancer Prevent. Res. 15: 241-247.
  18. Morrison RF, Farmer SR. 2000. Hormonal signaling and transcriptional control of adipocyte differentiation. J. Nutr. 130: 3116S-3121S.
  19. Ntambi JM, Kim YC. 2000. Adipocyte differentiation and gene expression. J. Nutr. 130: 3122S-3126S.
  20. Park HJ, Kim IT, Won JH, Jeong SH, Park EY, Nam JH, et al. 007. Anti-inflammatory activities of ent-16alphaH, 17-hydroxykauran- 19-oic acid isolated from the roots of Siegesbeckia pubescens are due to the inhibition of iNOS and COX-2 expression in RAW 264.7 macrophages via NF-kappaB inactivation. Eur. J. Pharmacol. 558: 185-193.
  21. Park JA, Park C, Han MH, Kim BW, Chung YH, Choi YH. 2011. Inhibition of adipocyte differentiation and adipogenesis by aged black garlic extracts in 3T3-L1 preadipocytes. J. Life Sci. 21: 720-728. https://doi.org/10.5352/JLS.2011.21.5.720
  22. Roh EJ, Kim BK, Kim DS. 2011. Antioxidative activity and antiaging effects of Tetrapanax papyriferum extract. J. Korean Oil Chemists' Soc. 28: 219-224.
  23. Rosen ED, Spiegelman BM. 2000. Molecular regulation of adipogenesis. Annu. Rev. Cell Dev. Biol. 16: 145-171. https://doi.org/10.1146/annurev.cellbio.16.1.145
  24. Schroeder-Gloeckler JM, Rahman SM, Janssen RC, Qiao L, Shao J, Roper M, et al. 2007. CCAAT/enhancer-binding protein beta deletion reduces adiposity, hepatic steatosis, and diabetes in Lepr(db/db) mice. J. Biol. Chem. 282: 15717- 15729. https://doi.org/10.1074/jbc.M701329200
  25. Suzuki R, Tanaka M, Takanashi M, Hussain A, Yuan B, Toyoda H, et al. 2011. Anthocyanidins-enriched bilberry extracts inhibit 3T3-L1 adipocyte differentiation via the insulin pathway. Nutr. Metab. (Lond). 8: 14. https://doi.org/10.1186/1743-7075-8-14
  26. Wang H, Wang H, Xiong W, Chen Y, Ma Q, Ma J, Ge Y, Han D. 2006. Evaluation on the phagocytosis of apoptotic spermatogenic cells by Sertoli cells in vitro through detecting lipid droplet formation by Oil Red O staining. Reproduction 132: 485-492. https://doi.org/10.1530/rep.1.01213
  27. Wang JP, Xu HX, Wu YX, Ye YJ, Ruan JL, Xiong CM, et al. 2011. Ent-$16\beta$, 17-dihydroxy-kauran-19-oic acid, a kaurane diterpene acid from Siegesbeckia pubescens, presents antiplatelet and antithrombotic effects in rats. Phytomedicine. 18: 873-878. https://doi.org/10.1016/j.phymed.2011.01.024
  28. Wang JP, Ruan JL, Cai YL, Luo Q, Xu HX, Wu YX. 2011. In vitro and in vivo evaluation of the wound healing properties of Siegesbeckia pubescens. J. Ethnopharmacol. 134: 1033- 1038. https://doi.org/10.1016/j.jep.2011.02.010
  29. Wang J, Cai Y, Wu Y. 2008. Antiinflammatory and analgesic activity of topical administration of Siegesbeckia pubescens. Pak. J. Pharm. Sci. 21: 89-91.
  30. Wang ND, Finegold MJ, Bradley A, Ou CN, Abdelsayed SV, Wilde MD, et al. 1995. Impaired energy homeostasis in C/ EBP alpha knockout mice. Science 269: 1108-1112. https://doi.org/10.1126/science.7652557
  31. World Health Organization. 2013. Obesity and overweight. Available from: http://www.who.int/mediacentre/factsheets/ fs311/en/index.html. Access June 20, 2013.

Cited by

  1. 서양민들레(Taraxacum officinale) 지상부, 지하부 및 혼합 추출물의 항산화 활성 비교 vol.44, pp.8, 2015, https://doi.org/10.3746/jkfn.2015.44.8.1157
  2. 희렴(Siegesbeckia pubescens) 추출물의 어병세균 Streptococcus iniae에 대한 항균활성 vol.49, pp.5, 2013, https://doi.org/10.5657/kfas.2016.0678
  3. 고지방식이로 비만을 유도한 C57BL/6 마우스에서 SM17의 항산화 및 항비만 효과 vol.32, pp.5, 2017, https://doi.org/10.6116/kjh.2017.32.5.47
  4. 야생당근(Daucus carota L.) 주스를 첨가한 개호식품(젤리) 제조 및 품질 특성 vol.23, pp.4, 2017, https://doi.org/10.14373/jkda.2017.23.4.337
  5. Study of the Antioxidant and Anti-invasive Effects of Siegesbeckia glabrescens Makino Extracts with Different Solvents vol.31, pp.4, 2013, https://doi.org/10.7856/kjcls.2020.31.4.601
  6. 통초(通草), 목통(木通) 신속 감별용 ITS 염기서열 기반 SCAR 마커 및 Multiplex-SCAR 분석법 개발 vol.36, pp.1, 2021, https://doi.org/10.6116/kjh.2021.36.1.9.