DOI QR코드

DOI QR Code

Modifications of mechanical, thermal, and electrical characteristics of epoxy through dispersion of multi-walled carbon nanotubes in supercritical carbon dioxide

  • Zaidi, M.G.H. (Department of Chemistry, National Institute of Technology) ;
  • Joshi, S.K. (Department of Physics, National Institute of Technology) ;
  • Kumar, M. (Department of Mechanical Engineering, G.B. Pant University of Agriculture and Technology) ;
  • Sharma, D. (Department of Chemistry, National Institute of Technology) ;
  • Kumar, A. (Department of Physics, National Institute of Technology) ;
  • Alam, S. (Polymer Division, Defense Materials Stores Research Development and Establishment) ;
  • Sah, P.L. (Department of Mechanical Engineering, G.B. Pant University of Agriculture and Technology)
  • Received : 2013.07.12
  • Accepted : 2013.09.20
  • Published : 2013.10.31

Abstract

A supercritical carbon dioxide (SCC) process of dispersion of multi-walled carbon nanotubes (MWCNTs) into epoxy resin has been developed to achieve MWCNT/epoxy composites (CECs) with improved mechanical, thermal, and electrical properties. The synthesis of CECs has been executed at a MWCNT (phr) concentration ranging from 0.1 to 0.3 into epoxy resin (0.1 mol) at 1800 psi, $90^{\circ}C$, and 1500 rpm over 1 h followed by curing of the MWCNT/epoxy formulations with triethylene tetramine (15 phr). The effect of SCC treatment on the qualitative dispersion of MWCNTs at various concentrations into the epoxy has been investigated through spectra analyses and microscopy. The developed SCC assisted process provides a good dispersion of MWCNTs into the epoxy up to a MWCNT concentration of 0.2. The effects of SCC assisted dispersion at various concentrations of MWCNTs on modification of mechanical, thermal, dynamic mechanical thermal, and tribological properties and the electrical conductivity of CECs have been investigated.

Keywords

References

  1. Li L, Zheng X, Wang J, Sun Q, Xu Q. Solvent-exfoliated and functionalized graphene with assistance of supercritical carbon dioxide. ACS Sustain Chem Eng, 1, 144 (2012). http://dx.doi.org/10.1021/sc3000724.
  2. Hao J, Lian Y, Guan L, Yue D, Guo X, Zhao S, Zhao Y, Ibrahim K, Wang J, Qian H, Dong J, Yuan H, Xing G, Sun B. Supercritical synthesis and characterization of SWNT-based one dimensional nanomaterials. Nanoscale, 3, 3103 (2011). http://dx.doi.org/10.1039/C1NR10217F.
  3. Ye S, Wu F, Ye XR, Lin Y. Supercritical fluid assisted synthesis and processing of carbon nanotubes. J Nanosci Nanotechnol, 9, 2781 (2009). http://dx.doi.org/10.1166/jnn.2009.1325.
  4. Zheng X, Xu Q, Li Z. Supercritical $CO_2$-driven, periodic patterning on one-dimensionals carbon nanomaterials. Sci China Chem, 53, 1525 (2010). http://dx.doi.org/10.1007/s11426-010-3106-0.
  5. Li Z, Andzane J, Erts D, Tobin JM, Wang K, Morris MA, Attard G, Holmes JD. A supercritical-fluid method for growing carbon nanotubes. Adv Mater, 19, 3043 (2007). http://dx.doi.org/10.1002/adma.200602483.
  6. Li Z, Jaroniec M, Papakonstantinou P, Tobin JM, Vohrer U, Kumar S, Attard G, Holmes JD. Supercritical fluid growth of porous carbon nanocages. Chem Mater, 19, 3349 (2007). http://dx.doi.org/10.1021/cm070767r.
  7. Bertoncini M, Coelho LAF, Maciel IO, Pezzin SH. Purification of single-wall carbon nanotubes by heat treatment and supercritical extraction. Mater Resh, 14, 380 (2011). http://dx.doi.org/10.1590/S1516-14392011005000051.
  8. Wang JS, Wai CM, Shimizu K, Cheng F, Boeckl JJ, Maruyama B, Brown G. Purification of single-walled carbon nanotubes using a supercritical fluid extraction method. J Phys Chem C, 111, 13007 (2007). http://dx.doi.org/10.1021/jp073374o.
  9. Hiramatsu M, Hori M. Preparation of dispersed platinum nanoparticles on a carbon nanostructured surface using supercritical fluid chemical deposition. Materials, 3, 1559 (2010). http://dx.doi.org/10.3390/ma3031559.
  10. Wang J, Khlobystov AN, Wang W, Howdle SM, Poliakoff M. Coating carbon nanotubes with polymer in supercritical carbon dioxide. Chem Commun, 1670 (2006). http://dx.doi.org/10.1039/B600441E.
  11. Fifield LS, Dalton LR, Addleman RS, Galhotra RA, Engelhard MH, Fryxell GE, Aardahl CL. Noncovalent functionalization of carbon nanotubes with molecular anchors using supercritical fluids. J Phys Chem B, 108, 8737 (2004). http://dx.doi.org/10.1021/jp037977l.
  12. Wang XB, Liu ZM, Hu PA, Liu YQ, Han BX, Zhu DB. Nanofluids in carbon nanotubes using supercritical $CO_2$: a first step towards a nanochemical reaction. Appl Phys A, 80, 637 (2005). http://dx.doi.org/10.1007/s00339-003-2264-8.
  13. Nguyen VH, Shim JJ. Supercritical fluid-assisted synthesis of a carbon nanotubes-grafted biocompatible polymer composite. Compos Interfaces, 20, 155 (2013). http://dx.doi.org/10.1080/15685543.2013.765140.
  14. Liu Z, Han B. Synthesis of carbon-nanotube composites using supercritical fluids and their potential applications. Adv Mater, 21, 825 (2009). http://dx.doi.org/10.1002/adma.200800609.
  15. Yue B, Wang Y, Huang CY, Pfeffer R, Iqbal Z. Polymeric nanocomposites of functionalized carbon nanotubes synthesized in supercritical $CO_2$. J Nanosci Nanotechnol, 7, 994 (2007). http://dx.doi.org/10.1166/jnn.2007.220.
  16. Huang YY, Terentjev EM. Dispersion of carbon nanotubes: mixing, sonication, stabilization, and composite properties. Polymers, 4, 275 (2012). http://dx.doi.org/10.3390/polym4010275.
  17. Ma PC, Mo SY, Tang BZ, Kim JK. Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites. Carbon, 48, 1824 (2010). http://dx.doi.org/10.1016/j.carbon.2010.01.028.
  18. Papanicolaou GC, Papaefthymiou KP, Koutsomitopoulou AF, Portan DV, Zaoutsos SP. Effect of dispersion of MWCNTs on the static and dynamic mechanical behavior of epoxy matrix nanocomposites. J Mater Sci, 47, 350 (2012). http://dx.doi.org/10.1007/s10853-011-5804-1.
  19. Gkikas G, Barkoula NM, Paipetis AS. Effect of dispersion conditions on the thermo-mechanical and toughness properties of multi walled carbon nanotubes-reinforced epoxy. Composites B, 43, 2697 (2012). http://dx.doi.org/10.1016/j.compositesb.2012.01.070.
  20. Garg P, Singh B, Kumar G, Gupta T, Pandey I, Seth RK, Tandon RP, Mathur R. Effect of dispersion conditions on the mechanical properties of multi-walled carbon nanotubes based epoxy resin composites. J Polym Res, 18, 1397 (2011). http://dx.doi.org/10.1007/s10965-010-9544-8.
  21. Prolongo SG, Buron M, Gude MR, Chaos-Moran R, Campo M, Urena A. Effects of dispersion techniques of carbon nanofibers on the thermo-physical properties of epoxy nanocomposites. Composites Sci Technol, 68, 2722 (2008). http://dx.doi.org/10.1016/j.compscitech.2008.05.015.
  22. Chen H, Jacobs O, Wu W, Rudiger G, Schädel B. Effect of dispersion method on tribological properties of carbon nanotube reinforced epoxy resin composites. Polym Test, 26, 351 (2007). http://dx.doi.org/10.1016/j.polymertesting.2006.11.004.
  23. Song YS, Youn JR. Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon, 43, 1378 (2005). http://dx.doi.org/10.1016/j.carbon.2005.01.007.
  24. Guo P, Chen X, Gao X, Song H, Shen H. Fabrication and mechanical properties of well-dispersed multiwalled carbon nanotubes/epoxy composites. Composites Sci Technol, 67, 3331 (2007). http://dx.doi.org/10.1016/j.compscitech.2007.03.026.
  25. Hosur M, Barua R, Zainuddin S, Kumar A, Trovillion J, Jeelani S. Effect of processing techniques on the performance of Epoxy/MWCNT nanocomposites. J Appl Polym Sci, 127, 4211 (2013). http://dx.doi.org/10.1002/app.37990.
  26. Gupta ML, Sydlik SA, Schnorr JM, Woo DJ, Osswald S, Swager TM, Raghavan D. The effect of mixing methods on the dispersion of carbon nanotubes during the solvent-free processing of multiwalled carbon nanotube/epoxy composites. J Polym Sci B, 51, 410 (2013). http://dx.doi.org/10.1002/polb.23225.
  27. Martone A, Formicola C, Piscitelli F, Lavorgna M, Zarrelli M, Antonucci V, Giordano M. Thermo-mechanical characterization of epoxy nanocomposites with different carbon nanotube distributions obtained by solvent aided and direct mixing. eXPRESS Polym Lett, 6, 520 (2012). http://dx.doi.org/10.3144/expresspolymlett.2012.56.
  28. Karippal JJ, Murthy HNN, Rai KS, Krishna M, Sreejith M. The processing and characterization of MWCNT/epoxy and CB/epoxy nanocomposites using twin screw extrusion. Polym-Plast Technol Eng, 49, 1207 (2010). http://dx.doi.org/10.1080/03602559.2010.496413.
  29. Jin FL, Park SJ. Recent advances in carbon-nanotube-based epoxy composites. Carbon Lett, 14, 1 (2013). http://dx.doi.org/10.5714/CL.2012.14.1.001.
  30. Fromyr TR, Hansen FK, Olsen T. The optimum dispersion of carbon nanotubes for epoxy nanocomposites: evolution of the particle size distribution by ultrasonic treatment. J Nanotechnol, 2012, 545930 (2012). http://dx.doi.org/10.1155/2012/545930.
  31. Jimenez-Suarez A, Campo M, Gaztelumendi I, Markaide N, Sanchez M, Urena A. The influence of mechanical dispersion of MWCNT in epoxy matrix by calendering method: batch method versus time controlled. Composites B, 48, 88 (2013). http://dx.doi.org/10.1016/j.compositesb.2012.12.011.
  32. Prolongo SG, Meliton BG, Del Rosario G, Urena A. Simultaneous dispersion and alignment of carbon nanotubes in epoxy resin through chronoamperometry. Carbon, 50, 5489 (2012). http://dx.doi.org/10.1016/j.carbon.2012.07.037.
  33. Glaskova T, Zarrelli M, Aniskevich A, Giordano M, Trinkler L, Berzina B. Quantitative optical analysis of filler dispersion degree in MWCNT-epoxy nanocomposite. Composites Sci Technol, 72, 477 (2012). http://dx.doi.org/10.1016/j.compscitech.2011.11.029.
  34. Foltran S, Cloutet E, Cramail H, Tassaing T. In situ FTIR investigation of the solubility and swelling of model epoxides in supercritical $CO_2$. J Supercrit Fluids, 63, 52 (2012). http://dx.doi.org/10.1016/j.supflu.2011.12.015.
  35. Guadagno L, De Vivo B, Di Bartolomeo A, Lamberti P, Sorrentino A, Tucci V, Vertuccio L, Vittoria V. Effect of functionalization on the thermo-mechanical and electrical behavior of multi-wall carbon nanotube/epoxy composites. Carbon, 49, 1919 (2011). http://dx.doi.org/10.1016/j.carbon.2011.01.017.
  36. Guadagno L, Vertuccio L, Sorrentino A, Raimondo M, Naddeo C, Vittoria V, Iannuzzo G, Calvi E, Russo S. Mechanical and barrier properties of epoxy resin filled with multi-walled carbon nanotubes. Carbon, 47, 2419 (2009). http://dx.doi.org/10.1016/j.carbon.2009.04.035.
  37. Allaoui A, El Bounia N. How carbon nanotubes affect the cure kinetics and glass transition temperature of their epoxy composites? A review. eXPRESS Polym Lett, 3, 588 (2009). http://dx.doi.org/10.3144/expresspolymlett.2009.73.

Cited by

  1. Mechanical Property and Thermal Stability of Epoxy Composites Containing Poly(ether sulfone) vol.39, pp.3, 2015, https://doi.org/10.7317/pk.2015.39.3.426
  2. Aligned multi-walled carbon nanotubes (MWCNT) and vapor grown carbon fibers (VGCF) reinforced epoxy adhesive for thermal conductivity applications vol.28, pp.23, 2017, https://doi.org/10.1007/s10854-017-7704-x
  3. Impregnation of viscose substrate with nicotinamide in supercritical carbon dioxide pp.1746-7748, 2019, https://doi.org/10.1177/0040517518813683
  4. A review of the electrical and mechanical properties of carbon nanofiller-reinforced polymer composites vol.54, pp.2, 2019, https://doi.org/10.1007/s10853-018-3006-9