DOI QR코드

DOI QR Code

Physicochemical Properties of Rice Endosperm with Different Amylose Contents

아밀로스함량 차이에 따른 벼 배유전분의 이화학적 특성평가

  • 정종민 (국립식량과학원 춘천출장소) ;
  • 정지웅 (국립식량과학원 춘천출장소) ;
  • 이상복 (국립식량과학원 답작과) ;
  • 김명기 (국립식량과학원 철원출장소) ;
  • 김보경 (국립식량과학원 답작과) ;
  • 손재근 (경북대학교 농업생명과학대학)
  • Received : 2013.04.22
  • Accepted : 2013.08.05
  • Published : 2013.09.30

Abstract

This study was carried out to find out the physicochemical properties of rice grains of 8 varieties having various amylose content. Amylose contents of 8 varieties were ranged from 6.3 to 30.9% and could be classified into 4 groups, such as waxy, low-amylose, nonglutinous, and high-amylose. Protein contents were ranged from 5.8% to 7.5% varied depending on variety, but there was no significant difference in protein contents among groups. The hardness of milled rice grains in low-amylose and non-glutinous was stronger than waxy and low-amylose group. Whiteness of waxy group grains was the highest while non-glutinous group was the lowest. The alkaline digestive values were evenly distributed from 5.2 to 6.9 and highly correlated with amylose content. There was significant difference in pasting properties of rice flours among groups. High-amylose group showed the highest initial pasting temperature and total setback viscosity, and the lowest peaks for trough and breakdown viscosity. Low-amylose group showed the highest breakdown viscosity but the lowest setback viscosity as well as high peak viscosity. Although amylose content was significantly correlated with alkali spreading value in milled rice, initial pasting temperature, and total setback, but it was negatively correlated with toyo-meter value and setback viscosity.

아밀로스 함량차이에 따른 배유전분의 이화학적 특성을 파악하기 위해 아밀로스 함량의 차이를 보이는 찰벼, 저 아밀로스, 중간 아밀로스, 고 아밀로스 품종의 외관특성, 화학특성, 호화특성 및 기계적 식미치를 조사하였으며, 그 결과를 요약하면 다음과 같다. 1. 시료들의 아밀로스 함량은 6.3%~30.9% 범위로 아밀로스 함량차이에 따라 4개 그룹 찰벼(A), 저 아밀로스(B), 중간 아밀로스(C), 고 아밀로스(D) 품종군으로 나눌 수 있었으며 각 그룹에 속한 품종들의 단백질함량은 5.8~7.5%로 품종간 차이가 있었으나 아밀로스 함량에 따라 분류된 그룹간 차이는 없었다. 2. 시험재료의 외형적 특성을 보면, 백도는 찰벼 품종군이 가장 높고 저아밀 중간아밀로스 품종군이 가장 낮았다. 현미경도는 고 아밀로스 품종 및 찰벼 품종이 메벼품종과 저 아밀로스 품종보다 대체적으로 낮았다. 알카리 붕괴도는 5.2~6.9의 분포를 보였으며 아밀로스 함량이 증가할수록 붕괴도가 커졌으며, 아밀로스 함량과 알카리 붕괴도 간 매우 높은 양의 상관($r=0.884^{**}$)을 보였다. 3. 아밀로그램 특성을 살펴보면 저 아밀로스 품종군은 호화개시온도가 중간 아밀로스 품종과 비슷한 반면 최고 점도와 강화점도는 높고 최종점도와 치반점도는 낮았다. 고 아밀로스 품종군은 호화개시온도가 다른 품종군에 비해 높고, 최고점도와 최저점도가 매우 낮았으며 최종점도가 상대적으로 높아서 강하점도는 낮고 치반점도는 높은 특성을 보였다. 4. 식미관련 이화학적 특성들 간 상관을 살펴보면 아밀로스 함량은 알카리 붕괴도와 상당히 높은 양의 상관($r=0.88^{**}$)을 Toyo-윤기치와는 높은 음의 상관($r=-0.89^{**}$) 나타냈고, 아밀로그램 특성 중에서는 호화개시온도, 치반점도와 유의한 양의 상관을 보이며, 강하점도와는 음의 상관을 나타냈다.

Keywords

References

  1. Cheo, Z. R. and M. H. Heu. 1975. Optimum conditions for alkali digestivity test in rice. Korea J. Crop Sci. 19 : 7.
  2. Chikubu, S., S. Watanabe, T. Sugimoto, N. Mamabe, F. Sakai, and Y. Taniguhi. 1985. Establishment of palatability estimation formula of rice by multiple regression analysis. J. Jpn. So. Starch Sci. 32 : 51-60. https://doi.org/10.5458/jag1972.32.51
  3. Choi, H. C. 2001. Physicochemical characteristics and varietal improvement related to palatability of cooked rice or suitability to food processing in rice. Symposium of the East Asian Society of Dietary Life. p. 58-80.
  4. Choi, H. C., H. G. Hwang, H. C. Hong, Y. G. Kim, and H. Y. Kim, et al. 2002a. A japonica specialty rice for fermentation food processing, opaque rice cultivar "Seolgaeng". Treat. of Crop Res. 3 : 45-51.
  5. Choi, H. C., H. G. Hwang, H. C. Hong, Y. G. Kim, and H. Y. Kim, et al. 2002b. A lodging tolerance and dull rice cultivar "Baegjinju". Treat. of Crop Res. 3 : 59-65.
  6. Choi, H. C. 2002c. Current status and perspectives in varietal improvement of rice cultivars for high-quality and valueadded product. Korean J. Crop Sci. 47 : 15-32.
  7. Choi, H. C., H. G. Hwang, H. C. Hong, Y. G. Kim, H. P. Moon, et al. 2003. A med-late maturing, lodging tolerance and high amylose speciality rice cultivar "Goamybyeo 2". Treat. of Crop Res. 4 : 149-157.
  8. Choi, S. Y. and M. S. Shin. 2009. Prorerties of flours prepared from domestic high amylose rice. Korean J. Food sci. Technol. 41 : 16-20.
  9. Endo, I., S. Chikubu, M. Suzuki, K. Kobayashi, and M. Naka. 1973. Palatability evaluation of cooked milled rice by physicochemical measurement. Rept. Nat. Food Res. Inst. 31 : 1-11.
  10. Fitzgerald, M. A. and R. F. Reinke. 2006. Rice Grain Quality III. A Report for the rural industries research and development corporation. RIRDC Publication No. 06/056 RIRDC.
  11. Heu, M. H. and S. Z. Park. 1990. Breeding strategies for quality diversification in rice. Proc. Symp. Rice quality. RDA, Korea. pp. 41-58.
  12. Hiroyoki, M. and Y. Takeda. 2000. Chewing properties of cooked rice from new characteristics rice cultivars and their relation to starch molecular structures. J. Appl. Glycosci. 47 : 61-65. https://doi.org/10.5458/jag.47.61
  13. Hong, Y. H., H. S. Ahn, S. K. Lee, and S. K. Jun. 1989. Relationship of properties of rice and texture of japonica and j/indica cooked rice. Korean J. Food and Sci. Thechnol. 20: 59-62.
  14. Huang, J. R, H. A. Schols, J. G. Jeroen, J. Zhengyu, E. Sulmann, and G. J. V. Alphons. 2007. Physicochemical properties and amylopectin chain profiles of cowpea, chickpea and yellow pea starches. Food Chemistry. 101 : 1338-1345. https://doi.org/10.1016/j.foodchem.2006.03.039
  15. Jeung, J. U. and Y. S. Shin. 2011. Evaluations on the Namil (SA)-flo1, a floury japonica rice line, for dry milling process to produce rice flour. Korean J. Crop Sci. 56 : 57-63. https://doi.org/10.7740/kjcs.2011.56.1.057
  16. Juliano, B. O., L. U. Onate, and D. Mundo. 1965. Relation of starch composition, protein content and gelatinization temperature to cooking and eating qualities of milled rice. Food Technol. 19 : 1006-1011.
  17. Juliano, B. O. 1985. Criteria and test for rice grain qualities. Rice chemistry and technology. American Association of Cereal Chemist. St paul, MN, USA, p. 443-524.
  18. Kang, H. J., I. K. Hwang, K. S. Kim, and H. C. Choi. 2003. Comparative structure and physicochemical and properties of Ilpumbyeo, a high-quality japonica, and its mutant, Suweon 464. J. Agric. Food Chem. 51 : 6598-6603. https://doi.org/10.1021/jf0344946
  19. Kang, H. J., H. S. Seo, and I. K. Hwang. 2004. Comparison of gelatinization and retrogradation characteristics among endosperm mutant rices derived from Ilpumbyeo. Korean J. Food sci. Technol. 36 : 879-884.
  20. Kim, D. C. 2002. Post harvest technology for high quality rice. Food Preservation and Processing Industry. 1 : 35-43.
  21. Kim, J. U., K. H. Lee, and D. Y. Kim. 1972. Studies on the quality of Korean rice. Korean J. Agric. Chem. Soc. 15 : 65-75.
  22. Kim, K. H. and S. M. OH. 1992. Varietal variation of alkali digestion value and its relationship with gelatinization temperature and water absorption rate of milled rice grain. Korean J. Crop Sci. 37 : 28-36.
  23. Kim, K. O., S. S. Kim, N. K. Seong, and Y. C. Lee. 2004. Evaluation and management methode of sensory test. Shinkwangpub pp. 210-218.
  24. Kim, M. H., D. G. Park, D. H. Kim, and S. S. Kim. 2005. Agricultural Outlook 2005(II); Prospects and challenges related with the rice market opening in Korea. Korea Rural Economic Institute pp. 91-97.
  25. Kim, S. K., S. J. Jeong, K. Kim, J. C. Chae, and J. H. Lee. 1984. Tentative classification of milled rice by sorption kinetics. J. Korean Chem. Soc. 27 : 204-210.
  26. Kim, S. K., J. C. Chae, M. S. Lim, and J. H. Lee. 1985. Interrelationship between amylose content and physical properties of milled rice. Korean J. Crop Sci. 30 : 320-325.
  27. KOSTAT. 2013. Survey results on the grain consumption of Korea in 2012. Statistics Korea.
  28. Kum, J. S. 2008. Blooming of rice processing industry. Food Industry and Nutrition. 13 : 9-14
  29. Kwak, T. S. 2011. Characteristics variation of amylogram properties by the year variation of the rapidity of grain filling in the recombinant inbred lines of rice. Korean J. Intl. Agri. 23(3) : 302-305.
  30. Kwon, Y. W., E. W. Lee, and B. W. Lee. 1990. Climate, soil and cultural technology of the areas producing high quality rice in Korea-with emphasis on the difference between Ichon and other regions. RDA. J. Crop Sci. 33 : 291-303.
  31. Lee, J. H., Y. S. Jo, M. T. Song, S. J. Yang, H. G. Hwang, N. S. Kim, H. C. Choi, and H. P. Moon. 2000. Analysis of quantitative trait loci (QTLs) related to rice gelatinization. Korean J. Crop Sci. 32 : 211-217.
  32. Lee, J. Y. 2009. Policy suggestion on rice processing industry. 26th Edition, Korean Technical Working Group pp. 1-21.
  33. Lim, S. J., D. U. Kim, J. K. Sohn, and S. K. Lee. 1995. Varietal variation of amylogram properties and its relationships with other eating quality characteristics in rice. Korea J. Breeding 27 : 268-275.
  34. Matveev, Y. I, van Soest J. J. G., C. Nieman, L. A. Wasserman, V. A. Protserov, M. Ezernitskaja, and V. P. Yuryev. 2001. The relationship between thermodynamic and structural properties of low and high amylose maize starches. Carbohydrate Polymers. 44 : 141-160. https://doi.org/10.1016/S0144-8617(00)00210-1
  35. RDA. 2003. Analysis criteria on agricultural researches. Rural Development Administration pp. 288-290.
  36. Song, J., H. J. Kim, D. S. Kim, C. K. Lee, J. T. Youn, S. L. Kim, and S. J. Suh. 2008. Physicochemical properties of starches in japonica rices of different amylose content. Korean J. Crop Sci. 53 : 285-291.
  37. Yong, S. C., K. H. Lee, H. J. Ha, Y. H. Choi, E. M. Kim, and S. Y. Park. 2012. Effect of steaming and dehydration condition on physicochemical characteristics of Korean traditional parboiled rice (Olbyeossal). J. Appl. Biol. Chem. 55 : 185-189. https://doi.org/10.3839/jabc.2012.029

Cited by

  1. Rice Line with Long and Spindle-shaped Grain vol.50, pp.2, 2018, https://doi.org/10.9787/KJBS.2018.50.2.116
  2. 근적외선 분광분석기를 이용한 국내외 재래종 벼 유전자원의 아밀로스 및 단백질에 관한 대량 평가 체계구축 vol.30, pp.4, 2013, https://doi.org/10.7732/kjpr.2017.30.4.450
  3. NIRS 분석 Data에 의한 국내외 육성품종 벼 유전자원의 아밀로스 및 단백질 성분에 대한 통계분석 vol.31, pp.5, 2013, https://doi.org/10.7732/kjpr.2018.31.5.498
  4. 근적외선분광분석에 의한 동아시아 지역 재래종 벼 유전자원의 아밀로스 및 단백질 함량 변이분석 vol.64, pp.2, 2013, https://doi.org/10.7740/kjcs.2019.64.2.070
  5. Statistical Analysis of Amylose and Protein Content in Breeding Line Rice Germplasm Collected from East Asian Countries Based on Near-infrared reflectance spectroscopy vol.51, pp.4, 2019, https://doi.org/10.9787/kjbs.2019.51.4.298
  6. 현미죽 적합 품종 선정을 위한 현미 품종별 이화학적 특성 vol.33, pp.2, 2013, https://doi.org/10.9799/ksfan.2020.33.2.204
  7. 죽 가공성 평가를 위한 원료 쌀의 품질지표 vol.33, pp.3, 2020, https://doi.org/10.9799/ksfan.2020.33.3.287
  8. Non-Additive Effects of Rice Flour Blends Prepared Using Korean Rice Cultivars with Different Amylose Contents vol.24, pp.4, 2020, https://doi.org/10.13050/foodengprog.2020.24.4.261