DOI QR코드

DOI QR Code

EFFECTS OF WAVE-PARTICLE INTERACTIONS ON DIFFUSIVE SHOCK ACCELERATION AT SUPERNOVA REMNANTS

  • Kang, Hyesung (Department of Earth Sciences, Pusan National University)
  • Received : 2013.01.30
  • Accepted : 2013.02.13
  • Published : 2013.02.28

Abstract

Nonthermal radiation from supernova remnants (SNRs) provides observational evidence and constraints on the diffusive shock acceleration (DSA) hypothesis for the origins of Galactic cosmic rays (CRs). Recently it has been recognized that a variety of plasma wave-particle interactions operate at astrophysical shocks and the detailed outcomes of DSA are governed by their complex and nonlinear interrelationships. Here we calculate the energy spectra of CR protons and electrons accelerated at Type Ia SNRs, using time-dependent, DSA simulations with phenomenological models for magnetic field amplification due to CR streaming instabilities, Alf$\acute{e}$enic drift, and free escape boundary. We show that, if scattering centers drift with the Alf$\acute{e}$en speed in the amplified magnetic fields, the CR energy spectrum is steepened and the acceleration efficiency is significantly reduced at strong CR modified SNR shocks. Even with fast Afv$\acute{e}$nic drift, DSA can still be efficient enough to develop a substantial shock precursor due to CR pressure feedback and convert about 20-30% of the SN explosion energy into CRs. Since the high energy end of the CR proton spectrum is composed of the particles that are injected in the early stages, in order to predict nonthermal emissions, especially in X-ray and ${\gamma}-ray$ bands, it is important to follow the time dependent evolution of the shock dynamics, CR injection process, magnetic field amplification, and particle escape. Thus it is crucial to understand the details of these plasma interactions associated with collisionless shocks in successful modeling of nonlinear DSA.

Keywords

References

  1. Abdo, A. A., et al. 2010, Fermi Large Area Telescope Observations of the Supernova RemnantW28 (G6.4- 0.1), ApJ, 718, 348 https://doi.org/10.1088/0004-637X/718/1/348
  2. Acero, F., et al. 2010, First Detection of VHE $\gamma$-Rays from SN 1006 by HESS, A&A, 516, A62 https://doi.org/10.1051/0004-6361/200913916
  3. Acciari, V. A., et al. 2011, Discovery of TeV Gamma-Ray Emission from Tycho's Supernova Remnant, ApJ, 730, L20 https://doi.org/10.1088/2041-8205/730/2/L20
  4. Bamba, A., Yamazaki, R, Ueno, M., & Koyama, K. 2003, Small-Scale Structure of the SN 1006 Shock with Chandra Observations, ApJ, 589, 827 https://doi.org/10.1086/374687
  5. Bell, A. R. 1978, The Acceleration of Cosmic Rays in Shock Fronts. I, MNRAS, 182, 147 https://doi.org/10.1093/mnras/182.2.147
  6. Bell, A. R. 2004, Turbulent Amplification of Magnetic Field and Diffusive Shock Acceleration of Cosmic Rays, MNRAS, 353, 550 https://doi.org/10.1111/j.1365-2966.2004.08097.x
  7. Beresnyak, A., Jones, T. W., & Lazarian, A. 2009, Turbulence-Induced Magnetic Fields and Structure of Cosmic Ray Modified Shocks, ApJ, 707, 1541 https://doi.org/10.1088/0004-637X/707/2/1541
  8. Berezhko, E. G., & Volk, H. J. 1997, Kinetic Theory of Cosmic Rays and Gamma Rays in Supernova Remnants. I. Uniform Interstellar Medium, Astropart. Phys., 7, 183 https://doi.org/10.1016/S0927-6505(97)00016-9
  9. Berezhko, E. G., Ksenofontov, L. T., & Volk, H. J. 2009, Cosmic Ray Acceleration Parameters from Multi-Wavelength Observations. The Case of SN 1006, A&A, 505, 169 https://doi.org/10.1051/0004-6361/200911948
  10. Berezhko, E. G., Ksenofontov, L. T., & Volk, H. J. 2012, Nonthermal Emission of Supernova Remnant SN 1006 Revisited: Theoretical Model and the H.E.S.S. Results, ApJ, 759, 12 https://doi.org/10.1088/0004-637X/759/1/12
  11. Blandford, R. D., & Eichler, D. 1987, Particle Acceleration at Astrophysical Shocks - a Theory of Cosmic-Ray Origin, Phys. Rept., 154, 1 https://doi.org/10.1016/0370-1573(87)90134-7
  12. Bykov, A. M., Osipov, S. M., & Ellison, D. C. 2011, Cosmic Ray Current Driven Turbulence in Shocks with Efficient Particle Acceleration: the Oblique, Long-Wavelength Mode Instability, MNRAS, 410, 39 https://doi.org/10.1111/j.1365-2966.2010.17421.x
  13. Caprioli, D. 2011, Understanding Hadronic Gamma-Ray Emission from Supernova Remnants, JCAP, 5, 26
  14. Caprioli, D. 2012, Cosmic-Ray Acceleration in Supernova Remnants: Non-Linear Theory Revised, JCAP, 7, 38
  15. Caprioli, D., Amato, E., & Blasi, P. 2010, Non-Linear Diffusive Shock Acceleration with Free- Escape Boundary, Astropart. Phys., 33, 307 https://doi.org/10.1016/j.astropartphys.2010.03.001
  16. Caprioli, D., Blasi, P., Amato, E., & Vietri, M. 2009, Dynamical Feedback of Self-Generated Magnetic Fields in Cosmic Ray Modified Shock, MNRAS, 395, 895 https://doi.org/10.1111/j.1365-2966.2009.14570.x
  17. Caprioli, D., & Spitkovsky, A. 2012, Cosmic-Ray-Induced Filamentation Instability in Collisionless Shocks, arXiv:1211.6765
  18. Drury, L. O'C. 1983, An Introduction to the Theory of Diffusive Shock Acceleration of Energetic Particles in Tenuous Plasmas, Rept. Prog. Phys., 46, 973 https://doi.org/10.1088/0034-4885/46/8/002
  19. Drury, L. O'C., & Downes, T. P. 2012, Turbulent Magnetic Field Amplification Driven by Cosmic Ray Pressure Gradients, MNRAS, 427, 2308 https://doi.org/10.1111/j.1365-2966.2012.22106.x
  20. Drury, L. O'C. 2011, Escaping the Accelerator: How, When and in What Numbers Do Cosmic Rays Get out of Supernova Remnants?, MNRAS, 415, 1807 https://doi.org/10.1111/j.1365-2966.2011.18824.x
  21. Edmon, P. P., Kang, H., Jones, T. W., & Ma, R. 2011, Non-Thermal Radiation from Type Ia Supernova Remnants, MNRAS, 414, 3521 https://doi.org/10.1111/j.1365-2966.2011.18652.x
  22. Eriksen, K. A., Hughes, J. P., Badenes, C., et al. 2011, Evidence for Particle Acceleration to the Knee of the Cosmic Ray Spectrum in Tycho's Supernova Remnant, ApJ, 728, L28 https://doi.org/10.1088/2041-8205/728/2/L28
  23. Gargate, L., Fonseca, R. A., Niemiec, J., Pohl, M., Bingham, R., & Silva, L. O. 2010, The Nonlinear Saturation of the Non-resonant Kinetically Driven Streaming Instability, ApJ, 711, L127 https://doi.org/10.1088/2041-8205/711/2/L127
  24. Gargate, L., & Spitkovsky, A. 2012, Ion Acceleration in Non-Relativistic Astrophysical Shocks, ApJ, 744, 67 https://doi.org/10.1088/0004-637X/744/1/67
  25. Giacalone, J., & Jokipii, J. R. 2007, Magnetic Field Amplification by Shocks in Turbulent Fluids, ApJ, 663, L41 https://doi.org/10.1086/519994
  26. Giordano, F., et al. 2012, Fermi Large Area Telescope Detection of the Young Supernova Remnant Tycho, ApJ, 744, L2 https://doi.org/10.1088/2041-8205/744/1/L2
  27. Guo, F., Jokipii, J. R., & Kota, J. 2010, Particle Acceleration by Collisionless Shocks Containing Large- Scale, Magnetic-Field Variations, ApJ, 725, 128 https://doi.org/10.1088/0004-637X/725/1/128
  28. Hillas, A. M. 2005, Can Diffusive Shock Acceleration in Supernova Remnants Account for High Energy Galactic, Cosmic Rays?, Journal of Physics G, 31, R95 https://doi.org/10.1088/0954-3899/31/5/R02
  29. Jones, T. W. 1993, Alfven Wave Transport Effects in the Time Evolution of Parallel Cosmic-Ray-Modified Shocks, ApJ, 413, 619 https://doi.org/10.1086/173031
  30. Kang, H. 2006, Cosmic Ray Acceleration at Blast Waves from Type Ia Supernovae, JKAS, 39, 95
  31. Kang, H. 2010, Cosmic Ray Spectrum in Supernova Remnant Shocks, JKAS, 43, 25
  32. Kang, H. 2012, Diffusive Shock Acceleration with Magnetic Field Amplification and Alfvenic Drift JKAS, 45, 127
  33. Kang, H., Edmon, P. P., & Jones, T. W. 2012, Non-Thermal Radiation from Cosmic-Ray Modified Shocks, ApJ, 745, 146 https://doi.org/10.1088/0004-637X/745/2/146
  34. Kang, H., & Jones, T. W. 2006, Numerical Studies of Diffusive Shock Acceleration at Spherical Shocks, Astropart. Phys., 25, 246 https://doi.org/10.1016/j.astropartphys.2006.02.006
  35. Kang, H., Jones, T. W., & Gieseler, U. D. J. 2002, Numerical Studies of Cosmic-Ray Injection and Acceleration, ApJ, 579, 337 https://doi.org/10.1086/342724
  36. Lee, S., Ellison, D. C., & Nagataki, S. 2012, A Generalized Model of Nonlinear Diffusive Shock Acceleration Coupled to an Evolving Supernova Remnant, ApJ, 750, 156 https://doi.org/10.1088/0004-637X/750/2/156
  37. Lucek, S. G., & Bell, A. R. 2000, Non-Linear Amplification of a Magnetic Field Driven by Cosmic Ray Streaming, MNRAS, 314, 65 https://doi.org/10.1046/j.1365-8711.2000.03363.x
  38. Malkov, M. A., & Drury, L. O'C. 2001, Nonlinear Theory of Diffusive Acceleration of Particles by Shock Waves, Rep. Progr. Phys., 64, 429 https://doi.org/10.1088/0034-4885/64/4/201
  39. Malkov, M. A., Diamond, P. H., & Sagdeev, R. Z. 2011, Mechanism for Spectral Break in Cosmic Ray Proton Spectrum of Supernova Remnant W44, Nature Communications, 2, 194 https://doi.org/10.1038/ncomms1195
  40. Mandelartz, M., & Tjus, J. B. 2013, A Statistical Study of Galactic SNR Source Spectra Detected at >GeV Energies, arXiv:1301.2437
  41. Morlino, G., Amato, E., & Blasi, P. 2009, Gamma-Ray Emission from SNR RX J1713.7-3946 and the Origin of Galactic Cosmic Rays, MNRAS, 392, 240 https://doi.org/10.1111/j.1365-2966.2008.14033.x
  42. Morlino G., & Caprioli, D. 2012, Strong Evidence for Hadron Acceleration in Tycho's Supernova Remnant, A&A, 538, 81 https://doi.org/10.1051/0004-6361/201117855
  43. Ohira, Y., Reville, B., Kirk, J. G., & Takahara, F. 2009, Two-Dimensional Particle-In-Cell Simulations of the Nonresonant, Cosmic-Ray-Driven Instability in Supernova Remnant Shocks, ApJ, 698, 445 https://doi.org/10.1088/0004-637X/698/1/445
  44. Parizot, E., Marcowith, A., Ballet, J., & Gallant, Y. A. 2006, Observational Constraints on Energetic Particle Diffusion in Young Supernovae Remnants: Amplified Magnetic Field and Maximum Energy, A&A, 453, 387 https://doi.org/10.1051/0004-6361:20064985
  45. Ptuskin, V. S., & Zirakashvili, V. N. 2005, On the Spectrum of High-Energy Cosmic Rays Produced by Supernova Remnants in the Presence of Strong Cosmic-Ray Streaming Instability and Wave Dissipation, A&A, 429, 755 https://doi.org/10.1051/0004-6361:20041517
  46. Ptuskin, V. S., Zirakashvili, V. N., & Seo, E. 2010, Spectrum of Galactic Cosmic Rays Accelerated in Supernova Remnants, ApJ, 718, 31 https://doi.org/10.1088/0004-637X/718/1/31
  47. Reville, R., & Bell, A. R. 2012, A Filamentation Instability for Streaming Cosmic Rays, MNRAS, 419, 2433 https://doi.org/10.1111/j.1365-2966.2011.19892.x
  48. Reville, R., & Bell, A. R. 2013, Universal Behaviour of Shock Precursors in the Presence of Efficient Cosmic-Ray Acceleration, arXiv:1301.3173
  49. Reynolds, S. P. 2008, Supernova Remnants at High Energy, ARA&A, 46, 89 https://doi.org/10.1146/annurev.astro.46.060407.145237
  50. Reynolds, S. P., Gaensler, B. M., & Bocchino, F. 2012, Magnetic Fields in Supernova Remnants and Pulsar-Wind Nebulae, Space Sci. Rev., 166, 231 https://doi.org/10.1007/s11214-011-9775-y
  51. Riquelme, M. A., & Spitkovsky, A. 2009, Nonlinear Study of Bell's Cosmic Ray Current-Driven Instability, ApJ, 694, 626 https://doi.org/10.1088/0004-637X/694/1/626
  52. Riquelme, M. A., & Spitkovsky, A. 2010, Magnetic Amplification by Magnetized Cosmic Rays in Supernova Remnant Shocks, ApJ, 717, 1054 https://doi.org/10.1088/0004-637X/717/2/1054
  53. Rogachevskii, I., Kleeorin, N., Brandenburg, A., & Eichler, D. 2012, Cosmic-Ray Current-Driven Turbulence and Mean-Field Dynamo Effect, ApJ, 753, 6 https://doi.org/10.1088/0004-637X/753/1/6
  54. Schlickeiser, R. 1989, Cosmic-Ray Transport and Acceleration. II. Cosmic Rays in Moving Cold Media with Application to Diffusive Shock Wave Acceleration, ApJ, 336, 264 https://doi.org/10.1086/167010
  55. Schlickeiser R. 2002, Cosmic Ray Astrophysics (Berlin: Springer)
  56. Schure, K. M., Bell, A. R, Drury, L. O'C., &. Bykov, A. M. 2012, Diffusive Shock Acceleration and Magnetic Field Amplification, Space Sci. Rev., 173, 491 https://doi.org/10.1007/s11214-012-9871-7
  57. Skilling, J. 1975, Cosmic Ray Streaming. I - Effect of Alfven Waves on Particles, MNRAS, 172, 557 https://doi.org/10.1093/mnras/172.3.557
  58. Vladimirov, A. E., Bykov, A. M., & Ellison, D. C. 2008, Turbulence Dissipation and Particle Injection in Nonlinear Diffusive Shock Acceleration with Magnetic Field Amplification, ApJ, 688, 1084 https://doi.org/10.1086/592240
  59. Volk, H. J., Berezhko, E. G., & Ksenofontov, L. T. 2005, Magnetic Field Amplification in Tycho and Other Shell-Type Supernova Remnants, A&A, 433, 229 https://doi.org/10.1051/0004-6361:20042015
  60. Zirakashvili, V. N., & Ptuskin, V. S. 2008, Diffusive Shock Acceleration with Magnetic Amplification by Nonresonant Streaming Instability in Supernova Remnants, ApJ, 678, 939 https://doi.org/10.1086/529580
  61. Zirakashvili, V. N., & Ptuskin, V. S. 2012, Numerical Simulations of Diffusive Shock Acceleration in SNRs, APh, 39, 12

Cited by

  1. NONTHERMAL RADIATION FROM SUPERNOVA REMNANTS: EFFECTS OF MAGNETIC FIELD AMPLIFICATION AND PARTICLE ESCAPE vol.777, pp.1, 2013, https://doi.org/10.1088/0004-637X/777/1/25
  2. MAGNETIC FIELD AMPLIFICATION IN NONLINEAR DIFFUSIVE SHOCK ACCELERATION INCLUDING RESONANT AND NON-RESONANT COSMIC-RAY DRIVEN INSTABILITIES vol.789, pp.2, 2014, https://doi.org/10.1088/0004-637X/789/2/137
  3. THREE-DIMENSIONAL SIMULATIONS OF THE NON-THERMAL BROADBAND EMISSION FROM YOUNG SUPERNOVA REMNANTS INCLUDING EFFICIENT PARTICLE ACCELERATION vol.789, pp.1, 2014, https://doi.org/10.1088/0004-637X/789/1/49
  4. COSMIC RAY ACCELERATION AT PERPENDICULAR SHOCKS IN SUPERNOVA REMNANTS vol.792, pp.2, 2014, https://doi.org/10.1088/0004-637X/792/2/133
  5. Cosmic Ray Production in Supernovae vol.214, pp.1, 2018, https://doi.org/10.1007/s11214-018-0479-4