DOI QR코드

DOI QR Code

Performance Evaluation of a Time-domain Gauss-Newton Full-waveform Inversion Method

시간영역 Gauss-Newton 전체파형 역해석 기법의 성능평가

  • Kang, Jun Won (Department of Civil Engineering, Hongik University) ;
  • Pakravan, Alireza (Department of Civil Engineering, New Mexico State University)
  • 강준원 (홍익대학교 토목공학과) ;
  • Received : 2013.06.04
  • Accepted : 2013.06.21
  • Published : 2013.08.30

Abstract

This paper presents a time-domain Gauss-Newton full-waveform inversion method for the material profile reconstruction in heterogeneous semi-infinite solid media. To implement the inverse problem in a finite computational domain, perfectly-matchedlayers( PMLs) are introduced as wave-absorbing boundaries within which the domain's wave velocity profile is to be reconstructed. The inverse problem is formulated in a partial-differential-equations(PDE)-constrained optimization framework, where a least-squares misfit between measured and calculated surface responses is minimized under the constraint of PML-endowed wave equations. A Gauss-Newton-Krylov optimization algorithm is utilized to iteratively update the unknown wave velocity profile with the aid of a specialized regularization scheme. Through a series of one-dimensional examples, the solution of the Gauss-Newton inversion was close enough to the target profile, and showed superior convergence behavior with reduced wall-clock time of implementation compared to a conventional inversion using Fletcher-Reeves optimization algorithm.

본 논문에서는 물성이 균일하지 않은 반무한 고체영역의 탄성파속도 분포를 재구성하기 위한 시간영역 Gauss-Newton 전체파형 역해석 기법을 소개한다. 반무한 영역을 유한 계산영역으로 치환하기 위하여 유한영역의 경계에 수치적 파동흡수 경계조건인 perfectly-matched-layers(PMLs)를 도입하였다. 이 역해석 문제는 PML을 경계로 하는 영역에서의 탄성파동방정식을 구속조건으로 하는 최적화 문제로 성립되며, 표면에서 측정된 변위응답과 혼합유한요소법에 의해 계산된 응답간의 차이를 최소화함으로써 미지의 탄성파속도 분포를 결정한다. 이 과정에서 Gauss-Newton-Krylov 최적화 알고리즘과 정규화기법을 사용하여 탄성파속도의 분포를 반복적으로 업데이트하였다. 1차원 수치예제들을 통해 Gauss-Newton 역해석으로 부터 재구성된 탄성파속도의 분포가 목표값에 충분히 근사함을 보였으며, Fletcher Reeves 최적화 알고리즘을 사용한 기존의 역해석 결과에 비해 수렴율이 현저히 개선되고 계산 소요시간이 단축됨을 확인할 수 있었다.

Keywords

References

  1. Akcelik, V. (2002) Multiscale Newton-Krylov Methods for Inverse Acoustic Wave Propagation. PhD Dissertation, Carnegie Mellon University, Pittsburgh, PA, USA.
  2. Akcelik, V., Biros, G., Ghattas, O. (2008) Parallel Multiscale Gauss-Newton-Krylov Methods for Inverse Wave Propagation, In proceedings of the 2002 ACM/IEEE conference on Supercomputing, pp.1-15.
  3. Epanomeritakis, I., Akcelik, V., Ghattas, O., Bielak, J. (2008) A Newton-CG Method for Largescale Three-dimensional Elastic Full-waveform Seismic Inversion, Inverse Problems, 24(034015).
  4. Kang, J.W., Kallivokas, L.F. (2010) The Inverse Medium Problem in 1D PML-truncated Heterogeneous Semi-infinite Domains, Inverse Problems in Science and Engineering, 18(6), pp.759-786. https://doi.org/10.1080/17415977.2010.492510
  5. Kang, J.W., Kallivokas, L.F. (2011) The Inverse Medium Problem in Heterogeneous PML-truncated Domains Using Scalar Probing Waves, Computer Methods in Applied Mechanics and Engineering, 200(1-4), pp.265-283. https://doi.org/10.1016/j.cma.2010.08.010
  6. Kang, J.W., Kallivokas, L.F. (2010) Mixed Unsplitfield Perfectly-matched-layers for Transient Simulations of Scalar Waves in Heterogeneous Domains, Computational Geosciences, 14(4), pp.623-648. https://doi.org/10.1007/s10596-009-9176-4
  7. Saad, Y. (2000) Iterative Methods for Sparse Linear Systems, 2nd Edition, SIAM.
  8. Vogel, C. (2002) Computational Methods for Inverse Problems, SIAM, Frontiers in Applied Mathematics.