DOI QR코드

DOI QR Code

Analysis of Structural Types and Design Factors for Fruit Tree Greenhouses

과수재배용 온실의 구조유형과 설계요소 분석

  • Nam, Sang-Woon (Department of Agricultural and Rural Engineering, Chungnam National University) ;
  • Ko, Gi-Hyuk (Department of Agricultural and Rural Engineering, Chungnam National University)
  • 남상운 (충남대학교 농업생명과학대학 지역환경토목학과) ;
  • 고기혁 (충남대학교 농업생명과학대학 지역환경토목학과)
  • Received : 2013.01.11
  • Accepted : 2013.02.01
  • Published : 2013.03.31

Abstract

In order to provide basic data for the development of a controlled environment cultivation system and standardization of the structures, structural status and improvement methods were investigated for the fruit tree greenhouses of grape, pear, and peach. The greenhouses for citrus and grape cultivation are increasing while pear and persimmon greenhouses are gradually decreasing due to the advance of storage facilities. In the future, greenhouse cultivation will expand for the fruit trees which are more effective in cultivation under rain shelter and are low in storage capability. Fruit tree greenhouses were mostly complying with standards of farm supply type models except for a pear greenhouse and a large single-span peach greenhouse. It showed that there was no greenhouse specialized in each species of fruit tree. Frame members of the fruit tree greenhouses were mostly complying with standards of the farm supply type model or the disaster tolerance type model published by MIFAFF and RDA. In most cases, the concrete foundations were used. The pear greenhouse built with the column of larger cross section than the disaster tolerance type. The pear greenhouse had also a special type of foundation with the steel plate welded at the bottom of columns and buried in the ground. As the results of the structural safety analysis of the fruit tree greenhouses, the grape greenhouses in Gimcheon and Cheonan and the peach greenhouses in Namwon and Cheonan appeared to be vulnerable for snow load whereas the peach greenhouse in Namwon was not safe enough to withstand wind load. The peach greenhouse converted from a vegetable growing facility turned out to be unsafe for both snow and wind loads. Considering the shape, height and planting space of fruit tree, the appropriate size of greenhouses was suggested that the grape greenhouse be 7.0~8.0 m wide and 2.5~2.8 m high for eaves, while 6.0~7.0 m wide and 3.0~3.3 m of eaves height for the pear and peach greenhouses.

본 연구는 과수재배 시설의 표준화 및 환경조절기술개발을 위한 기초자료로 제공하는 것을 목적으로 과수재배용 온실의 실태를 조사하여 구조유형과 설계요소를 분석하고, 기상재해에 대한 안전성과 구조 및 환경관리에 대한 개선방안을 검토하였다. 시설재배 면적이 가장 많은 5개 품목 중 주로 제주도에서 재배되고 있는 감귤과 현재 재배온실을 찾을 수 없는 단감을 제외한 포도, 배 및 복숭아재배 온실을 연구대상으로 하였다. 감귤과 포도재배 온실은 꾸준히 증가하고 있으나 저장시설의 발달로 배와 단감재배 온실은 감소하고 있는 추세이다. 앞으로는 비가림 효과가 크고 저장성이 떨어지는 품목을 중심으로 과수재배 온실의 변화가 예상된다. 조사대상 온실 중 배 재배 온실과 복숭아재배 대형 단동온실을 제외하고는 대체로 보급형 온실의 규격을 따르고 있으며, 재배작목별로 특성화된 온실은 없는 것으로 나타났다. 과수재배 온실의 대부분은 농촌진흥청과 농림수산식품부에서 고시한 농가보급형 모델이나 내재해형 모델의 부재규격을 따르고 있었다. 기초는 대부분 콘크리트 기초를 사용하고 있었으며, 배 재배 온실의 경우에는 내재해형 모델보다 두꺼운 단면의 기둥을 사용하고, 강판을 기둥의 하단에 용접하여 매설한 형태의 특수한 기초를 적용하고 있었다. 조사대상 온실의 구조적 안전성을 검토한 결과 대부분 안전하였으나 김천과 천안의 포도재배 온실, 남원과 천안의 복숭아재배 온실에서 적설에 불안전한 것으로 나타났고, 남원의 복숭아재배 온실은 풍속에 대한 안전성도 부족한 것으로 나타났다. 또한 채소재배 온실을 복숭아재배로 전용한 온실의 경우 적설과 풍하중 모두 상당히 불안정한 것으로 나타났다. 과수의 수형, 수고 및 재식간격을 고려하여 과수 재배 온실의 적정규격을 검토한 결과 포도재배 온실은 폭 7.0~8.0m, 측고 2.5~2.8m가 적당하고, 배와 복숭아재배 온실은 폭 6.0~7.0m, 측고 3.0~3.3m 정도가 적당한 것으로 판단된다.

Keywords

References

  1. Kim, J.H., G.Y. Kim, C.J. Yun, H.M. Cho, D.S. Son, and G.H. Hong. 2011a. The latest pear cultivation. Osung Publishing Co. p. 283-303 (in Korean).
  2. Kim, J.H., C.J. Yun, M.S. Lim, M.D. Cho, and J.S. Lee. 2011b. The latest peach cultivation. Osung Publishing Co. p. 347-365 (in Korean).
  3. Kim, M.K., S.W. Nam, J.E. Son, and N.K. Yun. 1994. Analyses of actual atate and structural safety of regionally characterized greenhouses in Korea. J. Bio. Fac. Env. 3(2):128-135 (in Korean).
  4. KOSIS. 2012. Cultivation area for protected horticultural crops. Korean Statistical Information Service (in Korean).
  5. KRC. 1995. Greenhouse structural requirements. Korea Rural Community Corporation (in Korean).
  6. Lee, J.C., S.K. Kim, J.K. Byeon, and Y.S. Ryu. 2008. New technology of grapevine cultivation. Sunjin Publishing Co. p. 347-391 (in Korean).
  7. MIFAFF and RDA. 2010. Designated notice of standards for horticultural and herbal facilities of disaster tolerance type. Ministry for Food, Agriculture, Forestry and Fisheries. Rural Development Administration (in Korean).
  8. RDA. 2004a. Protected cultivation of fruit trees. Rural Development Administration. p. 16-326 (in Korean).
  9. RDA. 2004b. Standard designs for vinyl house of farm supply type. p. 188-248 (in Korean).
  10. RDA. 2007. Standard designs for horticultural and herbal facilities of disaster tolerance type. p. 3-118 (in Korean).
  11. Ryu, H.R., I.H. Yu, M.W. Cho, and Y.C. Um. 2009. Structural reinforcement methods and structural safety analysis for the elevated eaves height 1-2W type plastic greenhouse. Journal of Bio-Environment Control 18(3):192-199 (in Korean).
  12. SFTES. 2005. Protected cultivation of kiwi fruit. Subtropical Fruit Tree Experimental Station. p. 1-7 (in Korean).
  13. Yum, S.H., H.J. Kim, H. Chun, S.Y. Lee, Y.I. Kang, and Y.H. Kim. 2005. Analysis of the structural safety in a non-heating greenhouse with a single cover for citrus cultivation in Jeju. Journal of Bio-Environment Control. 14(3):166-173 (in Korean).
  14. Yum, S.H., H.J. Kim, H. Chun, S.Y. Lee, Y.I. Kang, and Y.H. Kim. 2006a. Development of standardized greenhouse model for citrus cultivation. RDA Report. p. 976-984 (in Korean).
  15. Yum, S.H., H.J. Kim, H. Chun, S.Y. Lee, and Y.H. Kim. 2006b. Actual status of horticultural facilities in Jeju - Greenhouse for citrus cultivation and wind screening mesh. Proceeding of Bio-Env. Con. 15(1):104-107 (in Korean).