DOI QR코드

DOI QR Code

Analysis of Functional Components in Roasted Okra (Abelmoschus esculentus L. Moench) Seeds

볶음 오크라 종자의 주요 기능성분 분석

  • Ahn, Yul Kyun (Vegetable Reserch Division, National Istitute of Horticulture & Herbal Science, Rural Development Administration) ;
  • Jang, Ki Chang (Department of Functional Crop, National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Shun Hwan (Agricultural Research Center for Climate Change, National Istitute of Horticulture & Herbal Science, Rural Development Administration)
  • 안율균 (국립원예특작과학원 채소과) ;
  • 장기창 (국립식량과학원 신소재개발과) ;
  • 김천환 (국립원예특작과학원 온난화대응농업연구센터)
  • Received : 2013.01.31
  • Accepted : 2013.03.07
  • Published : 2013.03.31

Abstract

This study was conducted to investigate the general characteristics of raw okra seeds and the functional components of roasted okra seeds. The number of okra seed per pod was 78 in 'Greensod' and 88 in 'Beny'. The weight of okra seed per pod of 'Greensod' and 'Beny' were 4.4 g and 6.3 g, respectively. Free amino acid contents of the stir-fry and fresh okra seeds were measured as $2.69mg{\cdot}g^{-1}$ and $0.31mg{\cdot}g^{-1}$. Total polyphenolic compound content of the stirfry okra seeds was estimated as $12.61mg\;CGA{\cdot}g^{-1}$, compared to $2.54mg\;CGA{\cdot}g^{-1}$ fresh okra seeds, Thus, free amino acid and total polyphenolic compound contents in the stir-fry okra seeds were higher than fresh one, Antioxidant activities, such as DPPH and ABTS radical scavenging in the stir-fry okra seeds was the higher than fresh okra seeds.

본 연구는 오크라 종자를 볶았을 때의 기능성을 성분을 분석하여 용도 다양화를 위한 볶음차로의 이용 가능성을 검토하기 위하여 수행하였다. 꼬투리 당 오크라 종자의 수는 '그린소드' 품종이 78개, '베니' 품종이 88개 이었고, 과실 당 종자무게는 각각 4.4g과 6.3g이었다. 볶은 오크라 종자의 유리아미노산 함량은 $2.69mg{\cdot}g^{-1}$으로 생체종자의 $0.31mg{\cdot}g^{-1}$에 비해 8.7배나 높은 함량을 나타내었다. 총 페놀성 화합물 함량은 볶은 오크라 종자가 12.61mg CGA로 서 생체 상태보다 5배 높은 함량을 나타내었다. 오크라 종자의 항산화 활성은 DPPH 및 ABTS의 경우 볶은 오크라 종자가 생체 상태의 오크라 종자 보다 약 2배 이상 월등히 높게 나타내었다.

Keywords

References

  1. Ahn, Y.K., S.H. Kim, K.C. Seong, and D.K. Moon. 2011. Development of optimal pruning method on okra (Abelmoschus esculentus L. Moench) production. J. Bio-Enviro. Control 20(1):58-61.
  2. Choi, Y., S.M. Lee, J. Chun, H.B. Lee, and J. Lee. 2006. Influence of heat treatment of the antioxidant activities and polyphenolic compound of shiitake (Lentinus edodes) mushroom. Food Chem. 99:381-397. https://doi.org/10.1016/j.foodchem.2005.08.004
  3. Choi, Y.M., J.B. Ku, H.B. Chang, and J.S. Lee. 2005. Antioxidant activities and total phenolics of ethanol extracts from several edible mushrooms produced in Korea. Food Sci. Biotechnol. 14:700-703.
  4. Crossley, A. and T.P. Hilditch. 1951. The fatty acids and glycerides of okra seed oil. J. Sci. Food Agri. 2:251-255. https://doi.org/10.1002/jsfa.2740020604
  5. Hatano T., H. Kagawa, T. Yasuhara, and T. Okuda. 1988. Two new flavonoids and other constituents in licorice root: Their relative astringency and radical scavenging effects. Chem. Pharm Bull. 36:1090-2097.
  6. Ikeorgu, J.E.G., H.C. Ezumah, and T.A.T. Wahua. 1989. Productivity of species in cassava/maize/okra/egusi melon complex mixtures in Nigeria. Field Crops Res. 2:1-7.
  7. Lamont, W. 1999. Okra a versatile vegetable crop. HortTechnology 9:179-184.
  8. Olasantan, F.O. 1999. Nitrogen fertilization of okra (Abelmoschus esculentus) in an inter-cropping system with cassava (Manihot esculenta) and maize (Zea mays) in south-western Nigeria. J. Agricultural Sci., Cambridge 133:325-334. https://doi.org/10.1017/S0021859699007054
  9. Olasantan, F.O. 2001. Optimum plant populations for okra (Abelmoschus esculentus) in a mixture with cassava (Manihot esculenta) and its relevance to rainy season-based cropping systems in south-western Nigeria. J. Agricultural Sci., Cambridge 136:207-214. https://doi.org/10.1017/S0021859601008656
  10. Olasantan, F.O. and N.J. Bello. 2004. Optimum sowing dates for okra (Abelmoschus esculentus) in monoculture and mixture with cassava (Manihot esculenta) during the rainy season in the south-west of Nigeria. J. Agricultural Sci., Cambridge 142:49-58. https://doi.org/10.1017/S0021859604004010
  11. Pellegrini, R.R.N., A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans. 1999. Antioxidant activity applying improved ABTS radical cation decolorization assay. Free Radical Biol. Med. 26:1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  12. Seo, W.D., J.Y. Kim, D.S. Park, S.I. Han, J.E. Ra, J.H. Lee, Y.C. Song, M.J. Park, H.W. Kang, S.K. Oh, and K.C. Jang. 2011. Relationship of radical scavenging activities and anthocyanin contents in the 12 colored rice varieties in Korea. J. Korean Soc. Appl. Biol. Chem. 54(5):693-699. https://doi.org/10.1007/BF03253147
  13. Seo, W.D., J.Y. Kim, D.S. Park, S.I. Han, K.C. Jang, K.J. Choi, S.Y. Kim, S.H. Oh, J.E. Ra, G.H. Yi, S.K. Park, W.H. Hwang, Y.C. Song, B.R. Park, and H.W. Kang. 2011. Comparative analysis of physicochemicals and antioxidative properties of new giant embryo mutant, YR23517Acp79, in rice (Oryza sativa L.). J. Korean Soc. Appl. Biol. Chem. 54(5):700-709. https://doi.org/10.1007/BF03253148
  14. Tindall, H.D. 1983. Vegetables in the Tropics. McMillan AVI. p. 325-327.