DOI QR코드

DOI QR Code

In vitro Evaluation of Different Feeds for Their Potential to Generate Methane and Change Methanogen Diversity

  • Kim, Seon-Ho (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University) ;
  • Mamuad, Lovelia L. (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University) ;
  • Jeong, Chang-Dae (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University) ;
  • Choi, Yeon-Jae (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University) ;
  • Lee, Sung Sill (Department of Applied Life Science, Gyeongsang National University) ;
  • Ko, Jong-Youl (Nonghyup Feed, National Livestock Cooperation Federation) ;
  • Lee, Sang-Suk (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University)
  • Received : 2013.05.10
  • Accepted : 2013.08.18
  • Published : 2013.12.01

Abstract

Optimization of the dietary formulation is the most effective way to reduce methane. Nineteen feed ingredients (brans, vegetable proteins, and grains) were evaluated for their potential to generate methane and change methanogen diversity using an in vitro ruminal fermentation technique. Feed formulations categorized into high, medium and low production based on methane production of each ingredient were then subjected to in vitro fermentation to determine the real methane production and their effects on digestibility. Methanogen diversity among low, medium and high-methane producing groups was analyzed by PCR-DGGE. The highest methane production was observed in Korean wheat bran, soybean and perilla meals, and wheat and maize of brans, vegetable protein and cereal groups, respectively. On the other hand, corn bran, cotton seed meal and barley led to the lowest production in the same groups. Nine bacteria and 18 methanogen 16s rDNA PCR-DGGE dominant bands were identified with 83% to 99% and 92% to 100% similarity, respectively. Overall, the results of this study showed that methane emissions from ruminants can be mitigated through proper selection of feed ingredients to be used in the formulation of diets.

Keywords

References

  1. Association of Official Analytical Chemists (AOAC). 1990. Official methods of analysis association of official analytical chemists. 16th ed. AOAC International, Washington, DC.
  2. Asanuma, N., M. Iwamoto, and T. Hino. 1999. Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro. J. Dairy Sci. 82:780-787. https://doi.org/10.3168/jds.S0022-0302(99)75296-3
  3. Bano, N., S. Ruffin, B. Ransom, and J. T. Hollibaugh. 2004. Phylogenetic composition of arctic ocean archaeal assemblages and comparison with antarctic assemblages. Appl. Environ. Microbiol. 70:781-789. https://doi.org/10.1128/AEM.70.2.781-789.2004
  4. Beauchemin, A. K. and S. M. McGinn. 2005. Methane emissions from feedlot cattle fed barley or corn diets. J. Anim. Sci. 83:653-661.
  5. Bonhomme, A. 1990. Rumen ciliates: their metabolism and relationships with bacteria and their hosts. Anim. Feed Sci. Technol. 30:203-266. https://doi.org/10.1016/0377-8401(90)90016-2
  6. Chaney, A. L. and E. P. Marbach. 1962. Modified reagents for determination of urea and ammonia. Clin. Chem. 8:130-132.
  7. Getachew, G., M. Blummel, H. P. S. Makkar, and K. Becker. 1998. In vitro gas measuring techniques for assessment of nutritional quality of feeds: a review. Anim. Feed Sci. Technol. 72:261-281. https://doi.org/10.1016/S0377-8401(97)00189-2
  8. Hane, B. G., K. Jager, and H. G. Drexler. 1993. The pearson product-moment correlation coefficient is better suited for identification of DNA fingerprint profiles than band matching algorithms. Electrophoresis 14:967-972. https://doi.org/10.1002/elps.11501401154
  9. Han, S.-K., S.-H. Kim, and H.-S. Shin. 2005. UASB treatment of wastewater with VFA and alcohol generated during hydrogen fermentation of food waste. Proc. Biochem. 40:2897-2905. https://doi.org/10.1016/j.procbio.2005.01.005
  10. Kimihiro, H. and H. Matsui. 2008. Diversity of fumarate reducing bacteria in the bovine rumen revealed by culture dependent and independent approaches. Anaerobe 14:87-93. https://doi.org/10.1016/j.anaerobe.2007.12.002
  11. Lane, D. J. 1991. 16S/23S rRNA sequencing. Nucleic Acid Techniques in Bacterial Systematics.
  12. Lee, H. J., S. C. Lee, J. D. Kim, Y. G. Oh, B. K. Kim, C. W. Kim, and K. J. Kim. 2003. Methane production potential of feed ingredients as measured by in vitro gas test. Asian-Aust. J. Anim. Sci. 16:1143-1150. https://doi.org/10.5713/ajas.2003.1143
  13. McAllister, T. A., E. K. Okine, G. W. Mathison, and K. J. Cheng. 1996. Dietary, environmental and microbiological aspects of methane production in ruminants. Canadian J. Anim. Sci. 76:231-243. https://doi.org/10.4141/cjas96-035
  14. McAllister, T. A., L. M. Rode, D. J. Major, K. J. Cheng, and J. G. Buchanan-Smith. 1990. Effect of ruminal microbial colonization on cereal grain digestion. Canadian J. Anim. Sci. 70:571-579. https://doi.org/10.4141/cjas90-069
  15. McDonald, P., R. A. Edwards, and J. F. D. Greenhalgh. 1995. Animal Nutrition 5th. Longman, London, UK.
  16. Miller, T. L., M. J. Wolin, H. X. Zhao, and M. P. Bryant. 1986. Characteristics of methanogens isolated from bovine rumen. Appl. Environ. Microbiol. 51:201-202.
  17. Moe, W. P. and H. F. Tyrrell. 1979. Methane production in dairy cows. J. Dairy Sci. 62:1583-1586. https://doi.org/10.3168/jds.S0022-0302(79)83465-7
  18. Moore, T. R. and M. Dalva. 1997. Methane and carbon dioxide exchange potentials of peat soils in aerobic and anaerobic laboratory incubations. Soil Biol. Biochem. 29:1157-1164. https://doi.org/10.1016/S0038-0717(97)00037-0
  19. Muyzer, G., E. C. de Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695-700.
  20. Muyzer, G. and K. Smalla. 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek 73:127-141. https://doi.org/10.1023/A:1000669317571
  21. Nubel, U., B. Engelen, A. Felske, J. Snaidr, A. Wieshuber, R. I. Amann, W. Ludwig, and H. Backhaus. 1996. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J. Bacteriol. 178:5636-5643.
  22. Orskov, E. R. and I. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 92:499-503. https://doi.org/10.1017/S0021859600063048
  23. Qin, W. Z., C. Y. Li, J. K. Kim, J. G. Ju, and M. K. Song. 2012. Effects of defaunation on fermentation characteristics and methane production by rumen microbes in vitro when incubated with starchy feed sources. Asian-Aust. J. Anim. Sci. 25:1381-1388. https://doi.org/10.5713/ajas.2012.12240
  24. SAS. 2002. SAS/STAT. Statistical analysis systems for Windows. Release 9.1. SAS Institute Inc., Cary, N.C., USA.
  25. Shibata, M. 1992. Methane production in heifers, sheep and goats consuming diets of various hay-concentrate ratios. Anim. Sci. Technol. 63:1221-1227.
  26. Simpson, J. M., V. J. McCracken, B. A. White, H. R. Gaskins, and R. I. Mackie. 1999. Application of denaturant gradient gel electrophoresis for the analysis of the porcine gastrointestinal microbiota. J. Microbiol. Methods 36:167-179. https://doi.org/10.1016/S0167-7012(99)00029-9
  27. Swan, C. G., J. G. P. Bowman, J. M. Martin, and M. J. Giroux. 2006. Increased puroindoline levels slow ruminal digestion of wheat (Triticum aestivum L.) starch by cattle. J. Anim. Sci. 84:641-650.
  28. Tabaru, H., E. Kadota, H. Yamada, N. Sasaki, and A. Takeuchi. 1988. Determination of volatile fatty acids and lactic acid in bovine plasma and ruminal fluid by high performance liquid chromatography. Nihon Juigaku Zasshi 50:1124-1126. https://doi.org/10.1292/jvms1939.50.1124
  29. Van Kessel, J. A. S. and J. B. Russell. 1996. The effect of pH on ruminal methanogenesis. FEMS Microbiol. Ecol. 20:205-210. https://doi.org/10.1111/j.1574-6941.1996.tb00319.x
  30. Van Nevel, C. J. and D. I. Demeyer. 1977. Effect of monensin on rumen metabolism in vitro. Appl. Environ. Microbiol. 34:251-257.
  31. Watanabe, T., S. Asakawa, A. Nakamura, K. Nagaoka, and M. Kimura. 2004. DGGE method for analyzing 16S rDNA of methanogenic archaeal community in paddy field soil. FEMS Microbiol. Lett. 232:153-163. https://doi.org/10.1016/S0378-1097(04)00045-X
  32. Wright, A.-D. G. and C. Pimm. 2003. Improved strategy for presumptive identification of methanogens using 16S riboprinting. J. Microbiol. Methods 55:337-349. https://doi.org/10.1016/S0167-7012(03)00169-6
  33. Zhou, M., Y. H. Chung, K. A. Beauchemin, L. Holtshausen, M. Oba, T. A. McAllister, and L. L. Guan. 2001. Relationship between rumen methanogens and methane production in dairy cows fed diets supplemented with a feed enzyme additive. J. Appl. Microbiol. 111:1148-1158.

Cited by

  1. Effect of Lactobacillus mucosae on In vitro Rumen Fermentation Characteristics of Dried Brewers Grain, Methane Production and Bacterial Diversity vol.27, pp.11, 2014, https://doi.org/10.5713/ajas.2014.14517
  2. Use of Lysozyme as a Feed Additive on In vitro Rumen Fermentation and Methane Emission vol.29, pp.11, 2016, https://doi.org/10.5713/ajas.16.0575
  3. Efficacy of methane-reducing supplements in beef cattle rations vol.56, pp.3, 2016, https://doi.org/10.1071/AN15601
  4. Ruminal Methanogen Community in Dairy Cows Fed Agricultural Residues of Corn Stover, Rapeseed, and Cottonseed Meals vol.64, pp.27, 2016, https://doi.org/10.1021/acs.jafc.6b00708
  5. Fermentability and Nutrient Digestibility of Ration Supplemented with Soybean Oil Calcium Soap and Cashew Fruit Flour vol.16, pp.12, 2017, https://doi.org/10.3923/pjn.2017.945.953
  6. rumen fermentation, methane concentration, and methanogen abundance and diversity pp.1828-051X, 2018, https://doi.org/10.1080/1828051X.2017.1394170
  7. measurements of methane production from wheat and corn incubated in various forage-to-grain ratios pp.00225142, 2019, https://doi.org/10.1002/jsfa.9563
  8. 옥수수 가공방법 및 두께가 in situ 건물 분해율과 in vitro 메탄 발생에 미치는 영향 vol.37, pp.4, 2013, https://doi.org/10.5333/kgfs.2017.37.4.308
  9. Replacing Barley and Soybean Meal With By-products, in a Pasture Based Diet, Alters Daily Methane Output and the Rumen Microbial Community in vitro Using the Rumen Simulation Technique (RUSITEC) vol.11, pp.None, 2013, https://doi.org/10.3389/fmicb.2020.01614