DOI QR코드

DOI QR Code

Ginsenosides Composition and Antioxidant Activities of Fermented Ginseng Soymilk

인삼 첨가 발효두유의 사포닌 조성 및 항산화 활성

  • Received : 2013.07.12
  • Accepted : 2013.08.09
  • Published : 2013.10.31

Abstract

The objective of this study is to select an effective microbial strain to enhance the sensory qualities and functionalities of fermented ginseng soymilk. For this purpose, soybean were ground with water extracts of ginseng and fermented with five Lactobacillus strains. All strains grew well in ginseng soymilk, and viable cell counts reached greater than 8 log CFU/mL after 18 h of fermentation. The contents of total ginsenosides were higher in soymilk fermented with L. casei ATCC 393 than those in the other strains. The sensory qualities of the fermented soymilk were observed to increase with the intensity of sourness and showed the best sensory acceptability of soymilk fermented with L. kefir ATCC 35411. Moreover, the antioxidant activities, superoxide and hydroxyl radical scavenging activities were significantly enhanced by 2~4 and 4~5 times, respectively, compared to the non-fermented soymilk. In particular, the antioxidant activities of the fermented soymilk by L. kefir ATCC 35411 were the highest among the samples. This result suggests that soymilk fermented by L. kefir ATCC 35411 allowed obtaining a soymilk with enhanced sensory quality and antioxidant activity was able to contribute to the health benefit.

본 연구에서는 인삼 추출물이 용수로 사용된 두유를 Lactobacillus 5가지 균주를 이용하여 발효 인삼두유를 제조하였으며, 발효 균주에 따른 두유의 미생물학적 및 이화학적 특성과 항산화 활성에 대해 알아보았다. 인삼두유에서의 젖산균 생장은 L. acidophilus KCTC 3168이 가장 우수한 것으로 나타났으며 젖산균의 산 생성에 따른 pH 변화는 L. kefir ATCC 35411에서 가장 낮게 측정되었다. 관능검사 결과는 신맛이 강하면서 쓴맛, 콩비린내 및 쉰내 등이 비교적 약하게 평가된 L. kefir ATCC 35411이 가장 높게 선호되었다. 두유제조에 사용된 인삼의 기능성 성분인 진세노사이드 함량과 항산화 활성에 대해 분석한 결과 총 진세노사이드는 L. casei ATCC 393에서 유의적으로 가장 높게 함유되어 있었으며, 발효홍삼에 주로 존재하며 발효가 진행됨에 따라 함량이 증가하는 것으로 알려진 Rg2, Rg3 및 Rh1 함량 또한 L. casei ATCC 393에서 가장 높게 정량되었다. 인삼두유의 superoxide anion 라디칼 소거활성과 hydroxyl 라디칼 소거활성을 측정한 결과 발효두유에서 발효하지 않은 인삼두유에 비해 각각 2~4배 및 4~5배 정도 항산화 활성이 증진되었음을 알 수 있었으며, 특히 L. kefir ATCC 35411에서 가장 높은 활성을 보이는 것으로 나타났다. 이상의 결과로부터 인삼두유는 젖산균 발효에 의해 관능적, 기능적 측면에서 우수한 두유를 제조할 수 있을 것으로 사료되며, 발효균주로서 L. kefir ATCC 35411이 가장 적합할 것으로 판단되었다.

Keywords

References

  1. Kim EH, Ro HM, Kim SL, Kim HS, Chung IM. 2012. Analysis of isoflavone, phenolic, soyasapogenol, and tocopherol compounds in soybean [Glycine max (L.) Merrill] germplasms of different seed weights and origins. J Agric Food Chem 60: 6045-6055. https://doi.org/10.1021/jf300463f
  2. Orhan I, Ozcelik B, Kartal M, Aslan S, Sener B, Ozguven M. 2007. Quantification of daidzein, genistein and fatty acids in soybeans and soy sprouts, and some bioactive studies. Acta Biol Cracov Ser Bot 49: 61-68.
  3. Blagden T, Gilliland SE. 2005. Reduction of levels of volatile components associated with the "Beany" flavor in soymilk by Lactobacilli and Streptococci. J Food Sci 70: M186-M189.
  4. Yang H, Zhang L. 2009. Changes in some components of soymilk during fermentation with the basidiomycete Ganoderma lucidum. Food Chem 112: 1-5. https://doi.org/10.1016/j.foodchem.2008.05.024
  5. Kim MS, Sung MK, Seo SB, Kim KR, Lee KJ, Park MS, Chung JI. 2008. Breeding of lipoxygenase and Kunitz trypsin inhibitor-free soybean line. Korean Soybean Digest 25: 1-6.
  6. Lenis JM, Gillman JD, Lee JD, Shannon JG, Bilyeu KD. 2010. Soybean seed lipoxygenase genes: molecular characterization and development of molecular marker assays. Theor Appl Genet 120: 1139-1149. https://doi.org/10.1007/s00122-009-1241-9
  7. Ko YT. 1989. Acid production by lactic acid bacteria in soy milk treated by microbial protease or papain and preparation of soy yogurt. Korean J Food Sci Technol 21: 379-386.
  8. Wang HL, Kraiej L, Hesseltine CW. 1974. Lactic acid fermentation of soybean milk. J Milk Food Technol 37: 71-73. https://doi.org/10.4315/0022-2747-37.2.71
  9. Shin HC, Seong HS, Sohn HS. 2004. The industrial development and health benefits of the soymilk. Korean Soybean Digest 21: 15-27.
  10. Roh S. 2012. Effect of anthocyanin obtained from wild grapes on the photooxidation stability of soymilk. MS Thesis. Dankook University, Yongin, Korea.
  11. Liu Q. 2011. Quality characteristics and antioxidant activity of blackbean soy sikhye yogurt added with purple sweet potato powder. MS Thesis. Chung-Ang University, Anseong, Korea.
  12. Jeong DH. 2013. Physicochemical and functional properties of soymilk with buckwheat sprout addition. MS Thesis. Sookmyung Women's University, Seoul, Korea.
  13. Lee KJ. 2012. Characteristics of physico-chemical properties and analysis of functional components in soy milk with red ginseng extraction. PhD Dissertation. Chosun University, Gwangju, Korea.
  14. Tsangalis D, Ashton JF, McGill AEJ, Shah NP. 2002. Enzymic transformation of isoflavone phytoestrogens in soymilk by ${\beta}$-glucosidase-producing bifidobacteria. J Food Sci 67: 3104-3113. https://doi.org/10.1111/j.1365-2621.2002.tb08866.x
  15. Chun J, Kim JS, Kim JH. 2008. Enrichment of isoflavones aglycones in soymilk by fermentation with single and mixed cultures of Streptococcus infantarius 12 and Weissella sp. 4. Food Chem 109: 278-284. https://doi.org/10.1016/j.foodchem.2007.12.024
  16. Kwon Y, Apostolidis E, Shetty K. 2007. Anti-diabetes functionality of Kefir culture-mediated fermented soymilk supplemented with Rhodiola extracts. Food Biotechnol 20: 13-19.
  17. Kim RU. 2010. Identification and characterization of soy yogurt-forming lactic acid bacteria. MS Thesis. Pusan National University, Busan, Korea.
  18. Pham TT, Shah NP. 2008. Effect of lactulose on biotransformation of isoflavone glucosides to aglycones in soymilk by lactobacilli. J Food Sci 73: M158-M165. https://doi.org/10.1111/j.1750-3841.2008.00687.x
  19. Pham TT, Shah NP. 2008. Skim milk powder supplementation affects lactose utilization, microbial survival and biotransformation of isoflavone glycosides to isoflavone aglycones in soymilk by Lactobacillus. Food Microbiol 25: 653-661. https://doi.org/10.1016/j.fm.2008.04.004
  20. Tsangalis D, Ashton JF, Mcgill AEJ, Shah NP. 2003. Biotransformation of isoflavone by bifidobacteria in fermented soymilk supplemnted with D-glucose and L-cysteine. J Food Sci 68: 623-631. https://doi.org/10.1111/j.1365-2621.2003.tb05721.x
  21. Dubey UK, Mistry VV. 1996. Effect of bifidogenic factors on growth characteristics of bifidobacteria in infant formulas. J Dairy Sci 79: 1156-1163. https://doi.org/10.3168/jds.S0022-0302(96)76469-X
  22. Attele AS, Wu JA, Yuan CS. 1999. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 58: 1685-1693. https://doi.org/10.1016/S0006-2952(99)00212-9
  23. Lau AJ, Woo SO, Koh HL. 2003. Analysis of saponins in raw and steamed Panax notoginseng using high-performance liquid chromatography with diode array detection. J Chromatogr A 1011: 77-87. https://doi.org/10.1016/S0021-9673(03)01135-X
  24. Robak J, Gryglewski RJ. 1988. Flavonoids are scavengers of superoxide anions. Biochem Pharmacol 37: 837-841. https://doi.org/10.1016/0006-2952(88)90169-4
  25. Chung SK, Osawa T, Kawakishi S. 1997. Hydroxyl radicalscavenging effects of spices and scavengers from brown mustar (Brassica nigra). Biosci Biotech Biochem 61: 118-123. https://doi.org/10.1271/bbb.61.118
  26. Lee SK, Son HS, Ji GE. 1993. Comparison of cultured soymilk by Bifidobacterium and various human intestinal bacteria. Korean J Food Sci Techol 25: 694-697.
  27. Kim BG, Choi SY, Kim MR, Suh HJ, Park HJ. 2010. Changes of ginsenosides in Korean red ginseng (Panax ginseng) fermented by Lactobacillus plantarum M1. Process Biochem 45: 1319-1324. https://doi.org/10.1016/j.procbio.2010.04.026
  28. Akao T. 1992. Metabolic activation of crude drug components by intestinal bacterial enzymes. Med Pharm Soc 9: 1-13.
  29. Chi H, Ji GE. 2005. Transformation of ginsenosides Rb1 and Re from Panax ginseng by food microorganisms. Biotechnol Lett 27: 765-771. https://doi.org/10.1007/s10529-005-5632-y
  30. Wang BX, Cui JC, Liu AJ, Wu SK. 1983. Studies on the anti-fatigue effect of the saponins of stems and leaves of panax ginseng (SSLG). J Tradit Chin Med 3: 89-94.
  31. Choi WY, Lee CG, Song CH, Seo YC, Kim JS, Kim BH, Shin DH, Yoon CS, Lim HW, Lee HY. 2012. Enhancement of low molecular ginsenoside contents in low quality fresh ginseng by fermentation process. Korean J Medicinal Crop Sci 20: 117-123. https://doi.org/10.7783/KJMCS.2012.20.2.117
  32. Lee BH, You HJ, Park MS, Kwon B, Ji GE. 2006. Transformation of the glycosides from food materials by probiotics and food microorganisms. J Microbiol Biotechnol 16: 497-504.
  33. Marazza JA, Nazareno MA, de Giori GS, Garro MS. 2012. Enhancement of the antioxidant capacity of soymilk by fermentation with Lactobacillus rhamnosus. J Funct Foods 4: 594-601. https://doi.org/10.1016/j.jff.2012.03.005
  34. Wang YC, Yu RC, Chou CC. 2006. Antioxidative activities of soymilk fermented with lactic acid bacteria and bifidobacteria. Food Microbiol 23: 128-135. https://doi.org/10.1016/j.fm.2005.01.020
  35. Jeong EJ, Kim JY, Moon SH, Park KY. 2010. Characteristics, antioxidative activities and growth inhibitory effects in AGS human gastric adenocarcinoma cells of soymilk fermented by Bacillus subtilis KC-3 during fermentation. J Korean Soc Food Sci Nutr 39: 1113-1118. https://doi.org/10.3746/jkfn.2010.39.8.1113

Cited by

  1. Physicochemical Properties of Rice Grain-added Soymilk vol.43, pp.8, 2014, https://doi.org/10.3746/jkfn.2014.43.8.1278
  2. Quality Characteristics and Antioxidant Activity of Soymilk Added with Nelumbo Nucifera Root Powder vol.25, pp.2, 2016, https://doi.org/10.5934/kjhe.2016.25.2.239
  3. 녹차와 로즈마리 추출물을 첨가한 두유의 항산화 활성 vol.24, pp.6, 2013, https://doi.org/10.11002/kjfp.2017.24.6.871
  4. 병아리콩을 첨가한 두유의 품질 특성 및 항산화 활성 vol.30, pp.5, 2013, https://doi.org/10.9799/ksfan.2017.30.5.1015